Math, asked by Majornimisha, 8 months ago

prove- under root sec2 THETA + COSEC2 THETA = TAN THETA + COT THETA

Answers

Answered by Anonymous
8

To prove:

\sf{\sqrt{sec^{2}\theta+cosec^{2}\theta}=tan\theta+cot\theta}

Proof:

\sf{L.H.S.=\sqrt{sec^{2}\theta+cosec^{2}\theta}}

\sf\blue{sec\theta=\dfrac{1}{cos\theta} \ and \ cosec\theta=\dfrac{1}{sin\theta}}

\sf{=\sqrt{\dfrac{1}{cos^{2}\theta}+\dfrac{1}{sin^{2}\theta}}}

\sf{=\sqrt{\dfrac{sin^{2}\theta+cos^{2}\theta}{sin^{2}\theta.cos^{2}\theta}}}

\sf\blue{sin^{2}\theta+cos^{2}\theta=1}

\sf{=\sqrt{\dfrac{1}{(sin\theta.cos\theta)^{2}}}}

\sf{=\dfrac{1}{sin\theta.cos\theta}}

\sf{R.H.S.=tan\theta+cot\theta}

\sf\blue{tan\theta=\dfrac{sin\theta}{cos\theta} \ and \ cot\theta=\dfrac{cos\theta}{sin\theta}}

\sf{=\dfrac{sin\theta}{cos\theta}+\dfrac{cos\theta}{sin\theta}}

\sf{=\dfrac{sin^{2}\theta+cos^{2}\theta}{sin\theta.cos\theta}}

\sf\blue{sin^{2}\theta+cos^{2}\theta=1}

\sf{=\dfrac{1}{sin\theta.cos\theta}}

\sf{=L.H.S.}

\sf\purple{\tt{Hence, \ proved.}}

\sf\purple{\tt{\sqrt{sec^{2}\theta+cosec^{2}\theta}=tan\theta+cot\theta}}

Similar questions