Math, asked by Mister360, 4 months ago

Prove using co-ordinate Geometry that The diagonals of a rectangle are equal and bisects each other.​

Answers

Answered by NewGeneEinstein
15

Answer:

Diagram:-

\setlength {\unitlength}{1cm}\begin{picture}(0,0)\thinlines\put (0,-1){\vector (0,1){8}}\put (0,-1){\vector (0,-1){0.1}}\put (-1,0){\vector(1,0){7}}\put (-1,0){\vector (-1,0){0.1}}\thicklines\qbezier (0,0) (0,0)(5, 0)\qbezier (0,0)(0,0)(0,3)\qbezier (0,3)(0,3)(5,3)\qbezier(5,3)(5,3)(5,0)\qbezier (0,3)(0,3)(5,0)\qbezier (0,0)(0,0)(5,3)\put (-0.2,-0.4){\sf 0 (0,0)}\put (5.3,-0.4){\sf A (a,0)}\put </p><p>(5.2,3.3){\sf B (a,b)}\put (-0.3,3.3){\sf C (0,b)}\end{picture}

According to the diagram OABC is a rectangle.

The vertices of the Rectangle are

\sf O (0,0),A (0,a),B (a,b),C (0,b)

Here

AC and OB are the diagonals

\sf\overline {AC}=\sqrt {(0-a)^2+(b-0)^2}

\qquad\sf {:}\longrightarrow \sqrt {a^2+b^2}

\sf \overline{OB}=\sqrt {(a-0)^2+(b-0)^2}

\qquad\sf {:}\longrightarrow \sqrt {a^2+b^2}

\therefore  \sf AC=OB

\qquad\sf {:}\longrightarrow Midpoint\:of\:Diagonal\:AC=\left (\dfrac{0+a}{2},\dfrac {b+0}{2}\right)

\qquad\sf {:}\longrightarrow \left (\dfrac{a}{2},\dfrac {b}{2}\right)

\qquad\sf {:}\longrightarrow Midpoint\:of\:Diagonal\:OB=\left (\dfrac {a+0}{2},\dfrac {b+0}{2}\right)

\qquad\sf {:}\longrightarrow \left (\dfrac {a}{2},\dfrac {b}{2}\right)

Hence

AC and OB bisects each other.

___________________________________________________

Thus ,

The diagonals of rectangle OABC are equal and bisects each other.

Hence Proved.


Mister360: Thank you :)
Anonymous: No words... Excellent answer
Mister360: Fabulous PE
NewGeneEinstein: Thank you all
Mysterioushine: Nice :)
NewGeneEinstein: Thank you sista:)
Answered by SasmitaBiswal
1

Hope it's useful dear....

Attachments:
Similar questions