PS is the bisector of angle QPR of a ∆PQR. Prove that QS/SR = PQ/PR
Do it by indicating angle 1 angle 2 etc.
#asap Need best answer ✅✅
Attachments:
Answers
Answered by
6
Construction:-
DRAW RX // PS to meet them to QP ...
Prove:-
in <QPS ,<SPR, <PXR , <PRX....
<SPR=<PRX (Alternate interior angle(1)
<QPS=<PXR....(Corresponding Angle(2)
then,....
From Equation (1) and (2)
<SPR=<QPS
Also------...
<PRX=<PXR
then....
PX=PR(Opposite sides of angle always Equal to Opposite Angle
Here,
In ∆PXR ....
PX=PR
Now...
In∆QRX......
=)RX //PS
Now.....
Note:-PX=PR (Using)
Anonymous:
ya
Answered by
0
Construction:-
DRAW RX // PS to meet them to QP ...
Prove:-
in <QPS ,<SPR, <PXR , <PRX....
<SPR=<PRX (Alternate interior angle(1)
<QPS=<PXR....(Corresponding Angle(2)
then,....
From Equation (1) and (2)
<SPR=<QPS
Also------...
<PRX=<PXR
then....
PX=PR(Opposite sides of angle always Equal to Opposite Angle
Here,
In ∆PXR ....
PX=PR
Now...
In∆QRX......
=)RX //PS
Now.....
\frac{qs}{qp} = \frac{sr}{px}qpqs=pxsr
\frac{qs}{qp} = \frac{px}{pr}qpqs=prpx
Note:-PX=PR (Using)
DRAW RX // PS to meet them to QP ...
Prove:-
in <QPS ,<SPR, <PXR , <PRX....
<SPR=<PRX (Alternate interior angle(1)
<QPS=<PXR....(Corresponding Angle(2)
then,....
From Equation (1) and (2)
<SPR=<QPS
Also------...
<PRX=<PXR
then....
PX=PR(Opposite sides of angle always Equal to Opposite Angle
Here,
In ∆PXR ....
PX=PR
Now...
In∆QRX......
=)RX //PS
Now.....
\frac{qs}{qp} = \frac{sr}{px}qpqs=pxsr
\frac{qs}{qp} = \frac{px}{pr}qpqs=prpx
Note:-PX=PR (Using)
Similar questions