Math, asked by TANU81, 1 year ago

PS is the bisector of angle QPR of a ∆PQR. Prove that QS/SR = PQ/PR

Do it by indicating angle 1 angle 2 etc.

#asap Need best answer ✅✅

Attachments:

Answers

Answered by Anonymous
6
 \ll \lll \bold{ \huge{ \fbox {\color{red}{Dhanyavaad}}}} \ll \ll \lll



 \ll \lll \bold{ \huge{ \fbox {\color{maroon}{Solution}}}} \ll \ll \lll




Construction:-

DRAW RX // PS to meet them to QP ...



Prove:-

in <QPS ,<SPR, <PXR , <PRX....



<SPR=<PRX (Alternate interior angle(1)



<QPS=<PXR....(Corresponding Angle(2)



then,....


From Equation (1) and (2)


<SPR=<QPS

Also------...


<PRX=<PXR

then....

PX=PR(Opposite sides of angle always Equal to Opposite Angle

Here,

In ∆PXR ....


PX=PR


Now...

In∆QRX......

=)RX //PS



Now.....
 \frac{qs}{qp}  =  \frac{sr}{px}
\frac{qs}{qp}  =  \frac{px}{pr}

Note:-PX=PR (Using)




 \ll \lll \bold{ \huge{ \fbox {\color{Indigo}{It's Proved}}}} \ll \ll \lll



 \ll \lll \bold{ \huge{ \fbox {\color{tomato}{BE BRAINLY}}}} \ll \ll \lll


 \ll \lll \bold{ \huge{ \fbox {\color{Blue}{Yaduvanshi King}}}} \ll \ll \lll

Anonymous: ya
Anonymous: yes
Anonymous: thanks for brainliest
Answered by ujjwalkharkwal11
0
Construction:-

DRAW RX // PS to meet them to QP ...



Prove:-

in <QPS ,<SPR, <PXR , <PRX....



<SPR=<PRX (Alternate interior angle(1)



<QPS=<PXR....(Corresponding Angle(2)



then,....


From Equation (1) and (2)


<SPR=<QPS

Also------...


<PRX=<PXR

then....

PX=PR(Opposite sides of angle always Equal to Opposite Angle

Here,

In ∆PXR ....


PX=PR


Now...

In∆QRX......

=)RX //PS



Now.....
\frac{qs}{qp} = \frac{sr}{px}qpqs​=pxsr​ 
\frac{qs}{qp} = \frac{px}{pr}qpqs​=prpx​ 

Note:-PX=PR (Using)

ujjwalkharkwal11: i am so sorry
ujjwalkharkwal11: Pls forgive me
Anonymous: it's okay but Don't be use abuse words
ujjwalkharkwal11: Ok I am sorry
Anonymous: Okay
ujjwalkharkwal11: My phone was misused by my friends
ujjwalkharkwal11: Sorey
ujjwalkharkwal11: Forgive me
Anonymous: it's okay
Anonymous: be happy::)
Similar questions