(psinФ + qcosФ)² + (psinФ + qcosФ)²=p²+q²
prove that
Answers
Answered by
0
Step-by-step explanation:
Here, tanθ=pq⇒p=qtanθ→(1)tanθ=pq⇒p=qtanθ→(1)
⇒secθ=1+p2q2−−−−−−√=p2+q2−−−−−−√q⇒secθ=1+p2q2=p2+q2q
⇒cosθ=qp2+q2−−−−−−√→(2)⇒cosθ=qp2+q2→(2)
∴psinϕ−qcosϕ=qtanθsinϕ−qcosϕ∴psinϕ-qcosϕ=qtanθsinϕ-qcosϕ
=q(tanθsinϕ−1cosϕ)=q(tanθsinϕ-1cosϕ)
=q(sinθcosθsinϕ−1cosϕ)=q(sinθcosθsinϕ-1cosϕ)
=q(sinθcosϕ−cosθsinϕcosθsinϕcosϕ)=q(sinθcosϕ-cosθsinϕ
Similar questions