Math, asked by anujkumar5850, 6 months ago

Q.13.If the length,breadth and height of a cuboid are in the ratio5:3:2and its total

surface area is1550sq.m. Find:(i)the dimensions of the cuboid (ii)volume of the cuboid.​

Answers

Answered by Anonymous
7

Question:-

If the length,breadth and height of a cuboid are in the ratio5:3:2and its total surface area is1550sq.m. Find:(i)the dimensions of the cuboid (ii)volume of the cuboid.

Answer:-

  • The length, Breadth and height of cuboid is 25 m,15 m and 10 m.
  • The volume of cuboid is 3750 m³.

To find:-

  • the dimensions of the cuboid
  • volume of the cuboid.

Solution:-

  • Ratio = 5:3:2

Put x in the ratio,

  • Length = 5x
  • Breadth = 3x
  • Height = 2x
  • Total surface area = 1550 m²

(i)

 \large { \mathfrak{ \green{ \underline{ \purple{ sa = 2(lb + bh + lh)}}}}}

where,

  • l = length
  • b = breadth
  • h = height

According to question,

 \large{ \tt:  \implies \:  \:  \:  \:  \:  \:  \: 2(lb + bh + lh) = 1550}

 \large{ \tt : \implies \:  \:  \:  \:  \: 2(5x \times 3x + 3x \times 2x + 5x \times 2x) = 1550}

 \large{ \tt : \implies \:  \:  \:  \:  \: 2(31 {x}^{2} ) = 1550}

 \large{ \tt : \implies \:  \:  \:  \:  \: 31 {x}^{2}  =  \frac{1550}{2} } \\

 \large{ \tt : \implies \:  \:  \:  \:  \:  {x}^{2}  =  \frac{775}{31} } \\

 \large{ \tt : \implies \:  \:  \:  \:  \: x =  \sqrt{25} }

 \large{ \tt : \implies \:  \:  \:  \:  \: x = 5 \: m}

  • The value of x is 5 m
  • Length = 5x = 5×5 = 25 m
  • Breadth = 3x = 3×5 = 15 m
  • Height = 2x = 2×5 = 10 m

The length, Breadth and height of cuboid is 25 m,15 m and 10 m.

(ii)

 \large { \mathfrak{ \green{ \underline{ \purple{ volume = l \times b \times h}}}}}

According to question,

 \large{ \tt :  \implies \:  \:  \:  \: volume = 25 \times 15 \times 10}

 \large{ \tt :  \implies \:  \:  \:  \: volume = 3750 \:  {m}^{3} }

  • The volume of cuboid is 3750 m³.
Answered by Anonymous
33

Given

  • The length, breadth and height of a Cuboid are in the ratio 5:3:2.
  • Total surface area of Cuboid is 1550 m².

To find

  • (i) The dimensions of the Cuboid.
  • (ii) Volume of the Cuboid.

Solution

  • Let the ratio be x.

Then,

⠀⠀❍ Length = 5x

⠀⠀❍ Breadth = 3x

⠀⠀❍ Height = 2x

\boxed{\sf{\orange{(i)}}}

  • As the CSA of cuboid is given in the question, we will use the formula

\: \: \: \: \boxed{\tt{\bigstar{TSA_{(Cuboid)} = 2(lb + bh + hl){\bigstar}}}}

Here,

  • l = 5x
  • b = 3x
  • h = 2x

Putting the values

\tt\longmapsto{1550 = 2\bigg\lgroup{(5x)(3x) + (3x)(2x) + (2x)(5x)}\bigg\rgroup}

\tt\longmapsto{1550 = 2\bigg\lgroup{15x^2 + 6x^2 + 10x^2}\bigg\rgroup}

\tt\longmapsto{1550 = 2\bigg\lgroup{31x^2}\bigg\rgroup}

\tt\longmapsto{31x^2 = \dfrac{1550}{2}}

\tt\longmapsto{31x^2 = 775}

\tt\longmapsto{x^2 = \dfrac{775}{31}}

\tt\longmapsto{x^2 = 25}

\tt\longmapsto{x = \sqrt{25}}

\bf\longmapsto{x = 5}

\large{\boxed{\boxed{\sf{Dimensions\: of\: Cuboid :-}}}}

⠀⠀⠀❍ Length = 5x = 25m

⠀⠀⠀❍ Breadth = 3x = 15m

⠀⠀⠀❍ Height = 2x = 10m

\boxed{\sf{\orange{(ii)}}}

  • Finding Volume of the Cuboid.

\: \: \: \: \: \: \: \: \: \: \: \: \boxed{\tt{\bigstar{Volume_{(Cuboid)} = l \times b \times h{\bigstar}}}}

\tt:\implies\: \: \: \: \: \: \: \: {Volume = 25 \times 15 \times 10}

\bf:\implies\: \: \: \: \: \: \: \: {Volume = 3,750}

Hence,

  • The volume of the cuboid is 3,750 m³.

━━━━━━━━━━━━━━━━━━━━━━

Similar questions