q 14 fast please whoever will answer will get a thanks
Answers
Answer:
f : R -> R
f = {(x, x² / 1 - x²) : -∞<x<∞ }
f(x) = x² / 1 - x²
Domain of f :
1 - x² ≠ 0
x² ≠ 1
x ≠ -1 , 1
Thus Domain : x ∈ ℝ - {-1,1}
Range of f :
y = x² / 1 - x²
y (1-x²) = x²
y - yx² = x²
yx² + x² = y
x² = y / 1+y
1+y ≠ 0
y ≠ -1
& y / 1+y ≥ 0
x = f(y) = y / 1+y
let's graph f(y) = y / 1+y
Horizontal line intercept (Y int in this case)
x = 0 implies y = 0 thus (0,0) ∈ f(y)
Asymptotes :
Vertical
When y = -1
Horizontal
When x = 1
With this infornation of Asymptotes and horizontal line intercept
we can graph the function f(y) = y / 1+y
Thus Using the graph f(y) = y / 1+y {I have attached the graph in the answer}
we can easily find when y / 1+ y ≥ 0
y / 1+ y ≥ 0 ∀ y ∈ (-∞, -1) ∪ [0,∞)
Thus Range : y ∋ (-∞,-1) ∪ [0,∞)