Math, asked by sishkhush, 1 year ago

Q.14a The sum of the first, third and seventeenth term of
term of an AP is 216.
Find the sum of the first 13 terms of the A.P.​

Answers

Answered by rajsingh24
50

GIVEN:-

• The sum of the first, third and seventeenth term of an AP is 216.

SOLUTION:-

➡ let the first term of AP be 'a'.

➡ let the common difference of the AP be "d".

➡ T1 = a

➡ T3= a +2d

➡ T17 = a + 16d

➡ T1 +T3+T17 = 216

➡ 3a + 18d = 216 ----( both side divide by 3)

➡ .°. a + 6d = 72

.°. T 7 = 72

NOW,

➡ sum of the first 13 term of AP.

➡ 13/2[2a + 12d]

➡ 6 × T 7

➡ 13 ×72

➡ .°. 936.

SO, the sum of the first 13 terms of the A.P.is 936.

Answered by amitkumar44481
0

  \bold{ Given:- \:  \: 216} \begin{cases}  \sf \tt{ \underline {Sum \:  of \:  all  \: given  \: terms}} \\ \sf{a_1 } \\  \sf{ a_3 } \\  \sf{a_{17} }   \end{cases}

\\ \\ \tt \bold \red \star \:  \underline{Solution:-}

 \:  \:  \:  \:  \:  \:   \tt{a_1+a_3+a_{17}=216.}

 \:  \:  \:  \:  \:  \:  \tt{a + a + 2d + a + 16d = 216. }

 \:  \:  \:  \:  \:  \:  \tt{3a + 18d = 216.} \\

 \tt{Divided \:  by  \: \red{ 3}  \: both \:  sides, we  \: get}

 \:  \:  \:  \:  \:  \:  \tt{ \frac{3a}{3}  +  \frac{18d}{3}  =  \frac{216}{3} .}  \\ \\  \:  \:  \:  \:  \:  \: \tt{ a + 6d = 72.}  \\  \\  \:  \:  \:  \:  \:  \:  \tt{a_n = a + (n - 1)d. }\\  \\   \: \tt{ put \: n = 7.}  \\  \\  \:  \:  \:  \:  \:  \:  \tt{72 = a + (7 - 1)d.} \\  \\  \:  \:  \:  \:  \:  \:  \tt{72 = a + 6d .}\\  \\  \:  \:  \:  \:  \:  \: \tt{ a_7 = 72.}

 \tt{Now, }  \\  \:  \:  \:  \:  \:  \:   \tt{Sum \:  of \:  first \:  13 \:  terms .}

 \:  \:  \:  \:  \:  \:  \tt{S_n = \frac{n}{2}  \{2a + (n - 1)d \}} \\  \\ \:  \:  \:  \:  \:  \:  \tt{ S_{13} = \frac{13}{2}  \{2a + (13 - 1)d \}} \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{= \frac{13}{2}  \{2a + 12d \}} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \tt{  = \frac{13}{2}  \times  \frac{1}{2}  \{ a + 6d \}} \\  \\\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{=  13 \times 72. }\\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{=   936.}

Similar questions