Q. 2 (a) If a+c² ab+cd =ab+cd/b seqaure + d seqaure
Then prove that a b=cd
Answers
Answered by
9
Correct Question:-
If (a² + c²) / ab + cd = (ab + cd) / b² + d² , then prove that a/b = c/d.
Answer:-
Given:-
(a² + c²)/ab + cd = (ab + cd)/b² + d²
On cross multiplication we get,
⟹ (a² + c²)(b² + d²) = (ab + cd)²
Using (a + b)² = a² + b² + 2ab in LHS we get,
⟹ a²(b² + d²) + c²(b² + d²) = (ab)² + (cd)² + 2(ab)(cd)
⟹ a²b² + a²d² + b²c² + c²d² = a²b² + c²d² + 2abcd
[ a²b² , c²d² get cancelled both sides ]
⟹ a²d² + b²c² = 2abcd
⟹ (ad)² + (bc)² - 2(ab)(cd) = 0
using a² + b² - 2ab = (a - b)² we get,
⟹ (ad - bc)² = 0
⟹ ad - bc = √0
⟹ ad = bc
Dividing both sides by bd we get,
⟹ ad/bd = bc/bd
⟹ a/b = c/d
Hence, Proved.
Answered by
3
Right Question:-
If (a² + c²) / ab + cd = (ab + cd) / b² + d² , then prove that a/b = c/d.
Given:-
(a² + c²)/ab + cd = (ab + cd)/b² + d²
On cross multiplication we get,
★ (a² + c²)(b² + d²) = (ab + cd)²
Using (a + b)² = a² + b² + 2ab in LHS we get,
★ a²(b² + d²) + c²(b² + d²) = (ab)² + (cd)² + 2(ab)(cd)
★ a²b² + a²d² + b²c² + c²d² = a²b² + c²d² + 2abcd
[ a²b² , c²d² get cancelled both sides ]
★ a²d² + b²c² = 2abcd
★ (ad)² + (bc)² - 2(ab)(cd) = 0
using a² + b² - 2ab = (a - b)² we get :-
★ (ad - bc)² = 0
★ ad - bc = √0
★ ad = bc
Dividing both sides by bd we get,
★ ad/bd = bc/bd
★ a/b = c/d
★|★Hence Proved :)
______________________
Similar questions