Math, asked by pareekkhushi456, 5 months ago

Q.20 find the ratio of a line joining the points (1, 2), (3, 4) intersecting by a point (1/2, 3/4)​

Answers

Answered by aryan073
1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Q1) Find the ratio of a line joining the points (1,2) ,(3,4) interesting by a point (1/2,3/4)

 \:  \:   \huge\underline{ \divideontimes  \mathtt{ \: answer}}

 \:  \:  \:   \\ \bullet  \underline {\boxed{ \bf{ \: by \: using \: section \: formula}}}

\implies\displaystyle\tt{x=\dfrac{mx_1+n_x2}{m+n} \: and \: y=\dfrac{my_1+ny_2}{m+n}}

\implies\displaystyle\sf{\dfrac{1}{2}=\dfrac{m\times1+n\times3}{m+n}}

\implies\displaystyle\sf{m+n=2(m+3n)}

\implies\displaystyle\sf{m+n=2m+3n}

\implies\displaystyle\sf{m+n-2m-3n=0}

\implies\displaystyle\sf{-m-2n=0}

\implies\displaystyle\sf{m+2n=0 .........(1)}

\implies\displaystyle\tt{y=\dfrac{my_1+ny_2}{m+n}}

\implies\displaystyle\sf{\dfrac{3}{4}=\dfrac{m\times2+n\times4}{m+n}}

\implies\displaystyle\sf{3(m+n)=4(2m+4n)}

\implies\displaystyle\sf{3m+3n=8m+16n}

\implies\displaystyle\sf{3m+3n-8m-16n=0}

\implies\displaystyle\sf{-5m-13n=0}

\implies\displaystyle\sf{5m+13n=0........(2)}

\bigstar\displaystyle\bf{Solving\: both \: equations (1) \: and (2)}

\sf{m+2n=0 \times 5}

\sf{5m+13n=0}

\bf{5m+10n=0......(3)}

\sf{5m+13n=0}

\implies\pink\bf{n=0 \: and\: m=0}

Similar questions