Math, asked by cblackstorm111, 7 months ago

Q.25 Rakesh invested 2000/-@ 5% per annum and 3000/- @ 4% per annum. After a certain time he found that
the difference between the interests in both investments was 780/-. Find the duration of the investment
PLEASE ANSWER THE QUESTION .



Answers

Answered by InfiniteSoul
7

\sf{\orange{\boxed{\huge{Case\: 1}}}}

⠀⠀⠀⠀

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • Principle = Rs. 2000
  • Rate = 5%

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • Interest = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

\sf{\red{\boxed{\bold{Interest = \dfrac{P\times R\times T}{100}}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Interest = \dfrac{2000\times 5\times 1}{100}}}

⠀⠀⠀

\sf: \implies\: {\bold{ Interest = \dfrac{200\times 5\times 1}{10}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Interest = {20\times 5\times 1}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Interest = 100 t }}

⠀⠀⠀⠀

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • Interest in the 1st case is 100t

⠀⠀⠀⠀⠀⠀

\sf{\orange{\boxed{\huge{Case\: 2}}}}

⠀⠀⠀⠀

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • Principle = Rs. 3000
  • Rate = 4%

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • Interest = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

\sf{\red{\boxed{\bold{Interest = \dfrac{P\times R\times T}{100}}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Interest = \dfrac{3000\times 4\times 1}{100}}}

⠀⠀⠀

\sf: \implies\: {\bold{ Interest = \dfrac{300\times 4\times 1}{10}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Interest = {30\times 4\times 1}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Interest = 120 t }}

⠀⠀⠀⠀

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • Interest for 2nd case is 120 t

⠀⠀⠀⠀

_________________________

Now :-

Given that :-

  • Interest ( 2nd case ) - Interest ( 1st case ) = 780

⠀⠀⠀⠀

To find :-

  • Duration if the investment = ??

⠀⠀⠀⠀

Solution :-

⠀⠀⠀⠀

: \implies\: \sf{\bold{ 120t - 100t = 780 }}

⠀⠀

: \implies\: \sf{\bold{ 20t = 780 }}

⠀⠀⠀⠀

: \implies\: \sf{\bold{ t = \dfrac{780}{20} }}

⠀⠀⠀⠀

: \implies\: \sf{\bold{ t = \dfrac{78}{2} }}

: \implies\: \sf{\bold{ t = 39 years  }}

⠀⠀⠀⠀

Answers :-

  • Duration of the investment = 39 years

⠀⠀⠀⠀

Answered by lhamuashoktamang
1

Answer:39 yrs

Step-by-step explanation:

First we have to find the interest in both cases.

Interest=P*R*T/100 [Case 1]                                         [Case 2}

            =2000*5*t/100                                              =3000*4*t/100

            =10000*t/100                                                =12000*t/100

            =By cancelling the zeros we get                =120t

            =100t

According to the question

120t-100t=780

20t=780

t=780/20

t=39 yrs

Similar questions