Q.3 Find the minimum value of Function f(x) = (3 sin x - 4cosx - 10) X
(2 sinx + 4cosx - 10)
Answers
Answered by
1
Answer:
Given F(x)=3sinx+4cosx
Differentiate w.r.t x on both sides
Then f'(x)=3cosx-4sinx. (Since differentiation for sinx =cosx and differentiation for cosx=-sin x)
Again differentiate w.r.t x on both sides
Then f''(x)= -3sinx-4cosx=-(3sinx+4cosx). (If f''(x) >o it consists of minimum value and if f''(x)<0 maximum value exists)
So f''(x)=-F(x)
So I think
Its Minimum value does not exist
It consist of only max value
For all mini and max values f'(x)=0
So
3cosx-4sinx=0
So
3cosx=4sinx
Sinx/cosx=3/4
Tanx=3/4
So x=tan inverse 3/4
So max value of x is tan inverse 3/4
Similar questions