Math, asked by hydrafakeshivam34621, 8 months ago

Q.3
Find the quadratic equation whose roots are (6 + √5) and
(6-√5)​

Answers

Answered by varad032005
1

Answer:

Step-by-step explanation:

x=  6+√5 , 6-√5

Sum of zeroes of the polynomial  = 6+√5+6-√5

                                                        = 12

Product of zeroes of the polynomial  =  (6+√5)(6-√5)

                                                             = 36-5

                                                              =31

Formula for quadratic equation=>

=k[x²-x(sum of zeroes)+(product of zeroes)]   {here k is some constant}

=k[x²-x(12) + (31)]

=k[x²-12x+31]

So , x²-12x+31 is the quaratic equation

Answered by shrimanghugare1503
1

Answer:

x^2-12x+31

Step-by-step explanation:

late let alpha and beta are the roots of equation

so

alpha plus beta is equal to 2 6 plus under root 5 plus six minus under root 5=12

Alpha Alpha into beta is equal to=31

Similar questions