Math, asked by ravnoor0607, 1 year ago

Q. 33. Determine the values of and b for which
the given system of equations has infinitely many
solutions: 2x - (2a + 5y = 5 and (2b+1x-9y = 15.
Solution Given​

Answers

Answered by LovelyG
75

Answer:

\large{\underline{\boxed{\sf a = - 1\: \: and \: \: b =\dfrac{5}{2}}}}

Step-by-step explanation:

Given equation ;

  • 2x - (2a + 5)y = 5
  • (2b + 1)x - 9y = 15

For infinitely many solutions,

\mathrm{ \dfrac{a_1}{a_2} =  \dfrac{b_1}{b_2}  =  \dfrac{c_1}{c_1} }

Here,

  • a₁ = 2, a₂ = (2b + 1)
  • b₁ = (2a + 5), b₂ = 9
  • c₁ = 5, c₂ = 15

Substituting the value in above equation;

 \sf  \dfrac{2}{2b + 1}  =  \dfrac{2a + 5}{9}  =  \dfrac{5}{15}

On solving first,

 \implies \sf \frac{2}{2b + 1}  =  \frac{5}{15}  =  \frac{1}{3} \\  \\ \underline{ \bf on \: cross - multiplying :}  \\  \\  \implies \sf 2b + 1 = 6 \\  \\  \implies \sf 2b = 6 - 1 \\  \\  \implies \sf 2b = 5 \\  \\  \red {\boxed{ \bf \therefore \:  b = \frac{5}{2}}}

And, on solving second part;

 \implies \sf  \frac{2a + 5}{9}  =  \frac{5}{15}  =  \frac{1}{3}  \\  \\  \underline{\bf on \: cross - multipling : } \\  \\  \implies \sf 3(2a + 5) = 9 \\  \\  \implies \sf 2a + 5 =  \frac{9}{3}  \\  \\  \implies \sf 2a + 5 = 3 \\  \\  \implies \sf 2a = 3 - 5 \\  \\  \implies \sf 2a =  - 2 \\  \\  \implies \sf a = -   \frac{2}{2}  \\  \\  \boxed{\red{ \bf \therefore \:  a =  - 1}}

_______________________

Hence, for a = (-1) and b = 5/2, the above equation has infinitely many solutions.


Swarnimkumar22: nicely used latex
Answered by Anonymous
94

2x - (2a + 5)y = 5

(2b + 1)x - 9y = 15

___________ [GIVEN EQUATIONS]

• We have to find the value of a and b for infinitely many solutions.

______________________________

\dfrac{a_{1}}{a_{2}} = \dfrac{b_{1}}{b_{2}} = \dfrac{c_{1}}{c_{2}}

Here

a_{1} = 2

a_{2} = 2b + 1

b_{1} = -(2a + 5)

b_{2} = -9

c_{1} = 5

c_{2} = 15

\implies \dfrac{2}{2b\:+\:1} = \dfrac{-(2a\:+\:5)}{-9} = \dfrac{5}{15}

\implies \dfrac{2}{2b\:+\:1} = \dfrac{2a\:+\:5}{9} = \dfrac{5}{15}

\implies \dfrac{2}{2b\:+\:1} = \dfrac{5}{15}

\implies \dfrac{2}{2b\:+\:1} = \dfrac{1}{3}

Cross-multiply them

\implies 3 × 2 = 2b + 1

\implies 6 = 2b + 1

\implies 2b = 5

\implies \boxed{b \:= \:\dfrac{5}{2}}

_______________________________

Similarly..

\implies \dfrac{2a\:+\:5}{-9} = \dfrac{5}{15}

\implies \dfrac{2a\:+\:5}{9} = \dfrac{1}{3}

Cross-multiply them

\implies 3(2a + 5) = 9

\implies 6a + 15 = 9

\implies 6a = - 6

\implies \boxed{a \:= \:- 1}

______________________________

\huge{\bold{a\:=\:-1}}

and

\huge{\bold{b\:=}} \huge{\dfrac{5}{2}}

____________ \bold{[ANSWER]}

_____________________________

Similar questions