Math, asked by sharma76666666, 3 months ago

Q.33) If (x+ 1/x) : (x - 1/x) = 5:3, then the
value(s) of x is/are:
यदि (x+1/x): (x- 1/x) = 5:3 तोx का मान हैं-
[a] +1
[b] + 2
[c] +3
[d] 0
R

Answers

Answered by Anonymous
8

GIVEN :-

 \\  \sf \:  \frac{ x + \dfrac{1}{x} }{x -  \dfrac{1}{x} }  =  \frac{5}{3}  \\  \\

TO FIND :-

  • Value of x.

 \\

SOLUTION :-

 \\  \implies \sf \:  \dfrac{ \left( x +  \dfrac{1}{x} \right)}{\left(x -  \dfrac{1}{x}  \right)}  =  \dfrac{5}{3}  \\  \\  \\ \implies  \sf \: 3\left(x +  \dfrac{1}{x}  \right) = 5\left(  x -  \dfrac{1}{x} \right) \\  \\  \\  \implies \sf \: 3x +  \dfrac{3}{x}  = 5x -  \dfrac{5}{x}  \\  \\

  \implies \sf \: 3x - 5x =  -  \dfrac{5}{x}  -  \dfrac{3}{x}  \\  \\  \\ \implies  \sf \:  - 2x =  \dfrac{ - 8}{x}  \\  \\  \\   \implies\sf \:  - 2 {x}^{2}  =  - 8 \\  \\  \\ \implies  \sf \:  {x}^{2}  =   \cancel\dfrac{ - 8}{ - 2}  \\  \\  \\ \implies  \sf \:  {x}^{2}  = 4 \\  \\  \\ \implies \boxed{  \sf \: x =  \pm \: 2} \\  \\

VERIFICATION :-

For x=2 ,

 \\ \mapsto \sf \:  \dfrac{2 +  \dfrac{1}{2} }{2 -  \dfrac{1}{2} }  =  \dfrac{5}{3}  \\  \\  \\  \mapsto\sf \:  \dfrac{ \dfrac{4 + 1}{2} }{ \dfrac{4 - 1}{2} }  =  \dfrac{5}{3}  \\  \\

 \mapsto\sf \:  \dfrac{ \dfrac{5}{ \cancel2} }{ \dfrac{3}{ \cancel2} }  =  \dfrac{5}{3}  \\  \\  \\  \mapsto\sf \:  \dfrac{5}{3}  =  \dfrac{5}{3}  \:  \:  \:  \:  \: (verified) \\  \\

For x = -2 ,

 \\ \mapsto \sf \:  \dfrac{ - 2 +\left( -  \dfrac{1}{2}  \right) }{ - 2 - \left(  -  \dfrac{1}{2} \right)}  =  \dfrac{5}{3}  \\  \\  \\ \mapsto \sf \:  \dfrac{ - 2 -  \dfrac{1}{2} }{ - 2 +  \dfrac{1}{2} }  =  \dfrac{5}{3}  \\  \\  \\  \mapsto\sf \:  \dfrac{ \dfrac{ - 4 - 1}{2} }{ \dfrac{ - 4 + 1}{2} }  =  \dfrac{5}{3}  \\  \\

 \mapsto\sf \:  \dfrac{ \dfrac{ - 5}{ \cancel2} }{ \dfrac{ - 3}{ \cancel2} }  =  \dfrac{5}{3}  \\  \\  \\  \mapsto\sf \:  \dfrac{5}{3}  =  \dfrac{5}{3}  \:  \:  \:  \: (verified)

Similar questions