Math, asked by billionairesunny, 1 month ago

Q.3A rectangular box, which is open at the top, has a capacity of 256 cubic feet. Determine the dimensions of the box such that the least material is required for the construction of the box. Use Lagrange, s method of multipliers to obtain the solution.​

Answers

Answered by priyarksynergy
3

Given:

Capacity of rectangular box = 256 cubic feet.

To find:

The dimensions of the box

Explanation:

Let x, y, z be the length, breadth , height of the box

volume = xyz =256

xyz - 256 = 0                                                         (1)

∅(x, y, z) = x y z - 256

Let S be the material surface of the box.

        S = x y + 2yz + 2zx

∂S/∂x = y + 2x    and   ∂∅/∂x = yz

∂S/∂y = x + 2z    and   ∂∅/∂y = xz

∂S/∂z= 2y + 2x   and   ∂∅/∂z = xy

By Langrage's method multiplier we have:

[(∂S/∂x) + λ(∂∅/∂x)]= 0                    y + 2z +λyz = 0                (2)

[(∂S/∂y) + λ(∂∅/∂y)]= 0                    x + 2z +λyz = 0                (3)

[(∂S/∂z) + λ(∂∅/∂z)]= 0                     2y + 2x +λyz = 0              (4)

Multiplying by x we get,

xy + 2 xz + λ xyz = 0

xy + 2 xz + 256λ = 0

 xy + 2xz = -256λ                                                                      (5)

Multiplying(3) by y we get,

xy + 2 yz +λ xyz = 0

xy + 2 yz +256λ = 0

xy + 2yz = -256λ                                                                         (6)

Multiplying (4) by z , we get

2yz +2xz +λ xyz = 0

2yz +2xz  =-256λ = 0                                                                   (7)

From 5 and 6 we have,

xy + 2xz = xy +2yz

From 6 and 7

xy +2yz = 2yz = 2yz + 2xz

      xyz = 256

     (y)(y) (y/2) = 256= y³ = 512   y = 8

x = 8 , y= 8 , z = 4

Answer = 8 , 8 , 4.

       

       

       

Similar questions