Math, asked by harshita07116, 1 year ago

Q.43. If x ^18 = y ^21 = z^ 28, then 3,3 log, x, 3 log , y, 7
log z are in:
(a) A.P
(6) G.P
(C) H.P
(d) none of these.​

Answers

Answered by lAravindReddyl
20

Correct Question:-

{x}^{18}={y}^{21}={z}^{28}

3, 3 log_y x , 3 log_z y and 7 log_x z are ...in??

Answer:-

AP

Explanation:-

{x}^{18}={y}^{21}={z}^{28}

{x}^{18}={y}^{21}

By taking LOG on both sides

log {x}^{18}=log {y}^{21}

18 log  x= 21 log  y

2 \ times  3 log  x=  7 log  y

  3 \dfrac{log  x}{log  y} =\dfrac{7}{2}

\bold{  3 log_y x  =\dfrac{7}{2}}

Now,

{x}^{18}={z}^{28}

By taking LOG on both sides

log {x}^{18}=log {z}^{28}

18 log x =28 log z

 9  log x =7 \times 2 log z

  7\dfrac{log z}{log  x}  = \dfrac{9}{2}

\bold{7  log_x z= \dfrac{9}{2}}

Now,

{y}^{21}={z}^{28}

By taking LOG on both sides

log {y}^{21}=log {z}^{28}

21 log y=28 log z

 3 log y = 4 log z

3 \dfrac{ log y}{logz }= 4

\bold{ 3 log_z y = 4 }

According to the question

3, 3 log_y x , 3 log_z y and 7 log_x z are ...in??

we have,

  • \bold{  3 log_y x  =\dfrac{7}{2}}

  • \bold{7  log_x z= \dfrac{9}{2}}

  • \bold{ 3 log_z y = 4 }

The series is,

3 , \: \dfrac{7}{2 } , \: 4 ,  \: \dfrac{9}{2}

Here,

  • a_1 = 3
  • a_2 =  \dfrac{7}{2 }
  • a_3  = 4
  • a_2 =  \dfrac{7}{2 }

Let, us find common difference

d \implies  a_2 - a_1 =  = a_3-a_2

d \implies  2 a_2   = a_3+a_1

d \implies  2  \times \dfrac{7}{2}=   7

d \implies   7 =   7

Sincez common diff. is equal!

The series is in AP

Answered by NIKHILSREE
1

Answer:

hiiiiiiiiiiiiiiiiiiiiiiiiiiooiiiigxgbh,zyyci

Similar questions