Math, asked by malliprasannakumar, 9 months ago

Q. 7 At what angle the vector (A+B) and (A-B) must act, so that the resultant is A+B?

Answers

Answered by brainlyaryan12
3

<body bgcolor="r"><font color =Yellow>

\huge{\orange{\fbox{\fbox{\blue{\bigstar{\mathfrak{\red{Hello\:Mate}}}}}}}}

<marquee scrollamount = 700>♥️♥️♥️</marquee><marquee scrollamount = 500>⭐⭐⭐</marquee>

\huge{\red{\underline{\overline{\mathbf{Question}}}}}

→ Q. 7 At what angle the vector (A+B) and (A-B) must act, so that the resultant is A+B?

\huge{\green{\underline{\overline{\mathbf{Answer}}}}}

⇒Given:

  • ⇒Vector 1 = (A+B)
  • ⇒Vector 2 = (A-B)
  • ⇒Resultant = A+B

⇒To Find:

  • ⇒Angle Between Vectors

Solution:-

Using Formula-

\tiny{(A+B)^2=(A+B)^2+(A-B)^2+2(A+B)(A-B)Cos \theta}

\tiny{⇒{\cancel{A^2+B^2+2AB}}={\cancel{A^2+B^2+2AB}}+(A-B)^2+2(A+B)(A-B)Cos\theta}

0=(A-B)^2+2(A+B)(A-B)Cos\theta

-(A-B)^2=2(A+B)(A-B)Cos\theta

-\frac{(A+B)^{\cancel{2}}}{2{\cancel{(A+B)}}(A-B)}=Cos\theta

\large{\pink{\overbrace{\underbrace{\red{\theta=Cos^{-1}\bigg[\frac{(A+B)}{2(A-B)}\bigg]}}}}}

≿━━━━━━━━━༺❀༻━━━━━━━━━≾

Formulas Used :-

  • R^2=A^2+B^2+2(AB)Cos\theta

≿━━━━━━━━━༺❀༻━━━━━━━━━≾

\huge{\purple{\bigstar{\blue{\text{Please Follow.. }}}}}<marquee scrollamount = 700>⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️</marquee>

<font color = lime><marquee scrollamount = 10

★━★━★━★━★━★━★━★━★━★━★━★━★━★

▁ ▂ ▄ ▅ ▆ ▇ █♥️ ᗩᖇƳᗩ ♥️█ ▇ ▆ ▅ ▄ ▂ ▁

★━★━★━★━★━★━★━★━★━★━★━★━★━★

Similar questions