Q.9. in the given figure do&co are bisectors of angle ABC and angle BCD respectively. if angle ocd=30°, angle dab=100° and do =co. find the measures of angle doc angle adc angle abc
Answers
∠ DOC = 120°, ∠ ADC° = 60, ∠ ABC = 140°
Step-by-step explanation:
Given:
Here DO and CO are bisectors of angle ABC
∠ OCD = 30°, ∠ DAB = 100°
Here OD = OC
so ∠OCD = ∠ODC [angle opposite to equal sides]
∠ ODC = 30°
So in Δ DOC,
using angle sum property of triangle
∠DOC +∠OCD + ∠ODC= 180
∠DOC = 180° − 30° − 30°
∠ DOC = 120°
Since DO and CO are the bisector of angle ADC and angle BCD,
so ∠ BCD = 2 ∠ OCD
∠ BCD = 60°
And so is the ∠ADC = 2 ∠ODC
∠ADC = 60°
and ∠ DAB = 100° [given]
So in quadrilateral ABCD, sum of all angle is 360 so
∠ ABC +∠ BCD +∠ CDA +∠ DAB = 360°
∠ ABC + 60° + 60° + 100° = 360°
∠ ABC + 220° = 360°
∠ ABC = 360° - 220°
∠ ABC = 140°
Step-by-step explanation:
DOC = 120°, ∠ ADC° = 60, ∠ ABC = 140°
Step-by-step explanation:
Given:
Here DO and CO are bisectors of angle ABC
∠ OCD = 30°, ∠ DAB = 100°
Here OD = OC
so ∠OCD = ∠ODC [angle opposite to equal sides]
∠ ODC = 30°
So in Δ DOC,
using angle sum property of triangle
∠DOC +∠OCD + ∠ODC= 180
∠DOC = 180° − 30° − 30°
∠ DOC = 120°
Since DO and CO are the bisector of angle ADC and angle BCD,
so ∠ BCD = 2 ∠ OCD
\angle BCD = 2\times 30∠BCD=2×30
∠ BCD = 60°
And so is the ∠ADC = 2 ∠ODC
\angle ADC = 2\times 30∠ADC=2×30
∠ADC = 60°
and ∠ DAB = 100° [given]
So in quadrilateral ABCD, sum of all angle is 360 so
∠ ABC +∠ BCD +∠ CDA +∠ DAB = 360°
∠ ABC + 60° + 60° + 100° = 360°
∠ ABC + 220° = 360°
∠ ABC = 360° - 220°
∠ ABC = 140°