Physics, asked by Anonymous, 9 months ago

Q. A block of mass m is kept on a rough inclined plane of inclination   \theta . Coefficient of friction between the block and the plane is   \mu . What horizontal force F should be applied on the block so that it just begins to slide up the plane? (Given   \mu < cot  \theta ).

#ANSWER THE QUESTION WITH PROPER EXPLANATION

#No Spamming Plz​

Answers

Answered by nirman95
84

Answer:

It is best to draw the Free Body Diagram of the mass m over the inclined plane.

Since the question has mentioned that the block will start to move up, so the friction will be acting downwards.

Refer to the attached photo to understand better .

Since it is a Limiting condition , we can say ;

 \bigstar \:  \: F \cos( \theta)  = f + mg \sin( \theta)

  =  &gt;  F \cos( \theta)  =  \mu \{mg \cos( \theta)  +F \sin( \theta)  \}  + mg \sin( \theta)

 =  &gt; F \cos( \theta)  =  \mu mg \cos( \theta)  +  \mu F \sin( \theta)  + mg \sin( \theta)

Taking similar terms on one side ;

 =  &gt; F \{ \cos( \theta)  -  \mu \sin( \theta)  \} = mg \{ \sin( \theta)  +  \mu \cos( \theta)  \}

 =  &gt; F =  \dfrac{mg \{ \sin( \theta) +  \mu \cos( \theta) \}  }{   \{\cos( \theta)  -  \mu \sin( \theta) \}}

Attachments:
Answered by Anonymous
74

Answer :

  • \sf{F \: = \: \dfrac{\big[ mg(\sin \theta \: + \: \mu \cos \theta) \big]}{\cos \theta \: - \: \mu \sin \theta}}

Explanation :

As we know that from the attached diagram, that the Reaction Force (R) is placed on the opposite side of the mgcosθ.

So,

\longrightarrow \sf{R \: = \: mg \cos \theta \: + \: F \sin \theta \: \: \: \: \: \: ...(1)}

__________________________

Also, we know that, The Frictional Force is directly proportional to the Reaction force :

\longrightarrow \sf{f \: \propto \: R} \\ \\ \longrightarrow {\boxed{\sf{f \: = \: \mu R \: \: \: \: \: ...(2)}}}

Where,

  • μ is a constant

____________________________

Now, put value of R from (1) in (2)

\longrightarrow \sf{f \: = \: \mu (mg \cos \theta \: + \: F \sin \theta) \: \: \: \: \: \: ...(3)}

\rule{150}{0.5}

Also, from the Diagram

\longrightarrow \sf{F\cos \theta \: = \: mg \sin \theta \: + \: f} \\ \\ \longrightarrow \sf{F \cos \theta \: = \: (mg \sin \theta) \: + \: \big[ \mu ( mg \cos \theta \: + \: F \sin \theta) \big] } \\ \\ \longrightarrow \sf{F \: = \: \dfrac{\big[ mg(\sin \theta \: + \: \mu \cos \theta) \big]}{\cos \theta \: - \: \mu \sin \theta}} \\ \\ \underline{\underline{\sf{Force \: is\: \dfrac{\big[ mg(\sin \theta \: + \: \mu \cos \theta) \big]}{\cos \theta \: - \: \mu \sin \theta}}}}

Attachments:
Similar questions