Math, asked by misbai269, 2 days ago

Q) Find dy/dx 2x+3Y square=cosx ?​

Answers

Answered by Asterinn
45

we have to differentiate the following expression :-

 \rm 2x + 3 {y}^{2}  = cos \: x

 \rm  3 {y}^{2}  = cos \: x - 2x

\rm  {y}^{2}  =  \dfrac{cos \: x - 2x}{3} \\  \\ \rm  {y}  =   \sqrt{\dfrac{cos \: x - 2x}{3}} ...(1)

\rm  \longrightarrow 3 \dfrac{d( {y}^{2})}{dx}   = \dfrac{d( cos \: x - 2x)}{dx}

\rm  \longrightarrow 6y \dfrac{d{y}}{dx}   =  - sinx - 2 \\  \\\rm  \longrightarrow 6y \dfrac{d{y}}{dx}   =  -( sinx  + 2 ) \\  \\\rm  \longrightarrow  \dfrac{d{y}}{dx}   =   \dfrac{-( sinx  + 2 )}{6y}

You can put the value of y from equation (1).

Answer :-

 \rm\dfrac{d{y}}{dx}   =   \dfrac{-( sinx  + 2 )}{6y}

Answered by manissaha129
2

Answer:

→2x + 3 {y}^{2}  =  \cos(x)  \\ 2 + 6y \frac{dy}{dx}  =  -\sin(x) \\ 6y \frac{dy}{dx}  =  -  \sin(x)  - 2 \\  \boxed{ \frac{dy}{dx}  =  \frac{ - ( \sin(x) + 2) }{6y} }

  • dy/dx = -(sin(x)+2)/6y is the right answer.
Similar questions