Math, asked by tanveerkaur5689, 4 months ago

Q. Find The Slant Height ; CSA and TSA of a Cone Whose Volume is 12936cm^3 and The Diameter of the Base is 42cm.

=> PLZ EXPLAIN THIS QUESTION PROPERLY...
=> Spammers stay away..​

Answers

Answered by PhoenixAnish
8

see the attachmens....

Attachments:
Answered by SuitableBoy
82

Answer:

 \\

\frak{Given}\begin{cases}\sf{Volume\:of\:the\:cone=\bf{12936\:cm^3.}}\\\sf{Diameter\:of\:the\:base=\bf{42\:cm.}}\end{cases}

 \\

\underline{\bigstar\bf To \:Find:-}

  \\

  • Slant Height
  • CSA
  • TSA

 \\

\underbrace{\underline{\bf\bigstar\: Required \:Solution:-}}

 \\

◐ First, using the given volume and the diameter of the base, we would find the value of height.

◑ Then we would find the slant height, using the radius and the height .

◐ Then we would find CSA & TSA using their respective formulas.

 \\

Finding the Height of the cone :

 \\

We have :

  • Volume = 12936 cm³
  • Diameter = 42 cm

so,

  • Radius = 21 cm

We know :

\odot\;\boxed{\sf Volume_{\: cone}=\dfrac{1}{3}\pi r^2 h }

So,

 \displaystyle \colon \rarr \sf \: 12936 \:  {cm}^{3}  =  \frac{1}{ \cancel3}  \times  \frac{22} { \cancel7}  \times \cancel{ 21} \: cm \times 21 \: cm \times h \\  \\  \colon \rarr \sf \:   \cancel{12936} \:  \cancel {cm}^{3}  =  \cancel{22} \times 21 \:  \cancel {cm}^{2}  \times h \\  \\  \colon \rarr \sf \:  \cancel{ 588 }\: cm =  \cancel{21} \times h \\  \\   \colon \dashrightarrow \boxed { \frak{ \orange{h = 28 \: cm}}}

 \\

Finding the Slant height :

 \\

We have :

  • Radius = 21 cm
  • Height = 28 cm

We know :

\odot\;\boxed{\sf l=r^2+h^2}

Here,

  • l = slant height
  • r = radius
  • h = height.

So,

 \colon \rarr \sf \:  {l}^{2}  =  {(21 \: cm)}^{2}  +  {(28 \: cm)}^{2}  \\  \\  \colon \rarr \sf \:  {l}^{2}  = 441 \: cm {}^{2}  + 784 \: cm {}^{2}  \\  \\  \colon  \rarr \sf \:  {l}^{2}  = 1225 \:  {cm}^{2}  \\  \\   \colon \rarr \sf \: l =  \sqrt{1225 \:  {cm}^{2} }  \\  \\  \colon \dashrightarrow  \underline{\boxed{ \frak{ \purple{l = 35 \: cm}}}}

 \\

Finding the CSA of the cone :

 \\

We have :

  • r = 21 cm
  • l = 35 cm

We know :

\odot\;\boxed{\sf CSA_{\:cone}=\pi rl}

So,

\colon\rarr\sf\: CSA = \dfrac{22}{\cancel7}\times\cancel{21}\: cm\times 35\:cm\\\\\colon\sf\rarr\: CSA = 22\times 3\times 35\: cm^2\\\\\colon\dashrightarrow\underline{\boxed{\frak{\pink{CSA=2310\:cm^2}}}}

 \\

Finding TSA of the Cone :

 \\

We have :

  • CSA = πrl = 2310 cm²
  • r = 21 cm

We know :

\odot\;\boxed{\sf TSA _{\: cone}=\pi rl+\pi r^2}

So,

\colon\rarr\sf \: TSA = 2310 \: cm² +\dfrac{22}{\cancel7}\times \cancel{21}\:cm\times21\:cm\\\\\sf\colon\rarr \:TSA =  2310\:cm^2 + 22\times 3\times21\: cm^2\\\\\sf\colon\rarr\: TSA = 2310\:cm^2 + 1386 \:cm^2\\\\\colon\dashrightarrow\underline{\boxed{\frak{\red{TSA =3696\:cm^2}}}}

  \\

\underline{\bf \dag\: Final\:Answer:-}

 \\

  • Slant Height = 35 cm

  • CSA = 2310 cm²

  • TSA = 3696 cm²

 \\

_____________________________

Similar questions