Math, asked by musinipardhasaradhi, 5 months ago

Q Find the value of the expression below when theta = 30°
sin²theta + cosec²theta+ cos²theta – cot²theta
(A) O
(B) 73/2
(C) 1
(D) 2​

Answers

Answered by BrainlyProgrammer
4

Answer:

 {sin}^{2} \theta + cosec ^{2}  \theta+  cos ^{2}   \theta  - cot ^{2}  \theta \\  \sf \: we \: know \: that \:  \\ \bullet sin ^{2}  \theta + cos ^{2} \theta  = 1 \\ and \\   \bullet \: cosec ^{2}  \theta - cot ^{2} \theta  = 1 \\  \\ \\ \sf \: therefore \\   {sin}^{2} \theta + cos^{2}  \theta+  cosec ^{2}   \theta  - cot ^{2}  \theta \\ = 1 + 1 \\  = 2

So, OPTION(D) :2 is the correct answer

Formula used:-

▶️sin² theta +cos² theta =1

▶️cosec² theta -cot² theta =1

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf \: Given \:  - \begin{cases} &amp;\sf{\theta \:  = 30 \degree} \\ &amp;\sf{</p><p>\begin{gathered} {sin}^{2} \theta + cosec ^{2} \theta+ cos ^{2} \theta - cot ^{2} \theta \end{gathered}</p><p>} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\: find\:- \: the \: value \: of \:  \begin{cases} &amp;\sf{</p><p>\begin{gathered} {sin}^{2} \theta + cosec ^{2} \theta+ cos ^{2} \theta - cot ^{2} \theta \end{gathered}</p><p>}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

We know

\rm :\implies\:sin30 \degree \:  = \dfrac{1}{2}

\rm :\implies\:cos 30\degree \:  = \dfrac{ \sqrt{3} }{2}

\rm :\implies\:cosec30\degree = 2

\rm :\implies\:cot30\degree =  \sqrt{3}

Now,

Consider,

  \longrightarrow\rm \: </p><p>\begin{gathered}  \tt \: {sin}^{2} \theta + cosec ^{2} \theta+ cos ^{2} \theta - cot ^{2} \theta \end{gathered}</p><p>

 \pink{ \longrightarrow \:  \rm \: Put \: \theta \:  =  \: 30\degree}

 \rm :\implies\:</p><p>\begin{gathered} \tt {sin}^{2} 30\degree + cosec ^{2} 30\degree+ cos ^{2} 30\degree - cot ^{2} 30\degree \end{gathered}</p><p>

\rm :\implies\: {(\dfrac{1}{2}) }^{2}  +  {(2)}^{2}  +  {(\dfrac{ \sqrt{3} }{2} )}^{2}  -  {( \sqrt{3}) }^{2}

\rm :\implies\:\dfrac{1}{4}  + 2  +  \dfrac{3}{4}  - 1

\rm :\implies\:\dfrac{1 + 16  +  3 -12 }{4}

\rm :\implies\:\dfrac{8}{4}

\rm :\implies\:2

Additional Information :-

</p><p>\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty \\ \\ \rm cot A &amp; \rm \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions