Math, asked by gouravgupta65, 1 month ago

Q=>
 log_{3}( {3}^{x} - 8 )  = 2 - x
Please don't Spam ​

Answers

Answered by ToxicSuparv
1

log3(3x−8)=2−x⇒3x−8=32−x⇒3x−8=3x9⇒(3x)2−8.3x−9=0⇒(3x−9)(3x+1)=0

⇒3x=−1 where 3x is always positive.

⇒3x=9⇒x=2.

Answered by BrainlyBska
1

Answer:

Solution :-

 \large \bold{ log_{3}( {3}^{x}  - 8) }  = \bold{2 - x}  \\  \\ :   \to \:  {3}^{x}  - 8 =  {3}^{2 - x}  \\  \\   : \to \: \:  \:   {3}^{x}  - 8 =  \frac{9}{ {3}^{x} }

Let {3}^{x} be m

 : \to \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: m - 8 =  \frac{9}{m}  \\  \\  :  \to \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {m}^{2}  - 8m = 9 \\  \\  :  \to \:  \:  \:  \:  \:  \: {m}^{2}  - 8m - 9 = 0 \\  \\ :   \to \: (m - 9)(m + 1) = 0

(m + 1) is not possible because it gives negative value of x.

m - 9 = 0 \\  \\ m = 9 \\  \\  {3}^{x} = 9 \\  \\  \bf\implies \:\boxed { \bf \red{x = 2}}

Similar questions