Math, asked by reck2, 1 year ago

Q:- If 2x = 3+5i, then what is the 2(x)^3+2(x)^2-7x+72?
(a) 4
(b) -4
(c) 8
(d) -8

Answers

Answered by karthik4297
20
Given,
2x = 3+5i
 x = (
3+5i)/2 -------------------(i)
 x
² = x*x 
 x² = (3+5i)(3+5i)/2*2
 x² = (9 + 30i +25i²)/4
 x² = (9 + 30i - 25)/4                       {    ∵ i² = -1  }
x² = (-16 + 30i)/4      
 x² = (-8+15i)/2 ------------------------(ii)
⇒ x³ = x*x²
⇒ x³ = (3+5i)(-8+15i)/2*2
⇒ x³ = (-24+45i-40i+75i²)/4                      {    ∵ i² = -1  }
⇒ x³ = (-24 +5i -75)/4
⇒ x³ = (-99+5i)/4   -------------------(iii)
put the value of x, x² and x³ from equns (i), (ii) & (iii). 
2(x)³+2(x)²-7x+72 = 2(-99+5i)/4  + 2(-8+15i)/2 -7(3+5i)/2 + 72
                                 
= (-99+5i)/2 + (-16+30i)/2 -7(3+5i)/2 +72
                                 
= (-99 + 5i -16 + 30i - 21 - 35i)/2 +72
                                 
= (-136)/2 + 72
                                 
= -68 + 72
                                 
= 4
Similar questions