Q] If cos θ + sin θ = √2cos θ , then prove that
cos θ - sin θ = √2sin θ
•No spam.
Answers
Answered by
2
Given that: cos x + sin x = √2 cos x, or
sin x = cos x (√2–1)
Next to prove, cos x - sin x = √2 sin x, take
LHS = cos x - sin x
= [sin x *1/(√2–1)]- sin x
= sin x*[1-(√2–1)]/(√2–1)
= sin x [2-√2]*(√2+1)/(√2–1)(√2+1)
= sin x* [2√2+2–2-√2]
= sin x*√2 = RHS. Proved
Answered by
2
VeriFied√
Given
cos θ + sin θ = √2cos θ
Squaring both side, we get
(cos θ + sin θ)2 = 2cos2θ
cos2θ + sin2θ + 2 × cosθ × sinθ = 2cos2θ
sin2θ + 2 × cosθ × sinθ = 2cos2θ – cos2θ
sin2θ + 2 × cosθ × sinθ = cos2θ
cos2θ – 2 × cosθ × sinθ = sin2θ
Now adding sin2θ both side, we get
cos2θ -2 × cosθ × sinθ + sin2θ = sin2θ + sin2θ
(cos θ – sin θ)2 = 2sin2θ
cos θ – sin θ = √2sinθ
∴ cos θ – sin θ = √2sinθ
@Haryanvi_chankya
Similar questions
Computer Science,
17 days ago
Science,
17 days ago
Sociology,
1 month ago
Biology,
9 months ago
Computer Science,
9 months ago