Math, asked by sandip62077, 2 months ago

Q. If cosA + sinA = √2 sin(90° - A), show that cosA - sinA = √2 cos(90° - A).

Answers

Answered by stuprajin6202
2

Answer:

</p><p>\begin{gathered} \sin \: A + \cos A = \sqrt{2} \sin(90 - A) \\ \\ \\ = &gt; \sin \: A + \cos \: A = \sqrt{2} \cos \: A \\ \\ = &gt; \frac{ \sin \: A + \cos \: A }{ \cos A} = \sqrt{2} \\ \\ \\ = &gt; \frac{ \sin \: A }{ \cos \: A } + 1 = \sqrt{2} \\ \\ \\ = &gt; \tan \: A = \sqrt{2} - 1 \\ \\ \end{gathered}sinA+cosA=2sin(90−A)=&gt;sinA+cosA=2cosA=&gt;cosAsinA+cosA=2=&gt;cosAsinA+1=2=&gt;tanA=2−1</p><p></p><p></p><p>Hence,</p><p></p><p></p><p>\begin{gathered} \cot \: A = \frac{1}{ \tan \: A } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: (as \: we \: know \: ) \\ \\ \\ = &gt; \cot \: A = \frac{1}{ \sqrt{2} - 1 } \\ \\ \\ = &gt; \cot \: A = \frac{ \sqrt{2 } + 1 }{( \sqrt{2} - 1)( \sqrt{2} + 1) } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: (by \: rationalazing) \\ \\ \\ = &gt; \cot \: A = \frac{ \sqrt{2} + 1}{2 - 1} \\ \\ \\ = &gt; \cot \: A = \sqrt{2} + 1\end{gathered}cotA=tanA1(asweknow)=&gt;cotA=2−11=&gt;cotA=(2−1)(2+1)2+1(byrationalazing)=&gt;cotA=2−12+1=&gt;cotA=2+1</p><p>

Similar questions