Math, asked by Anonymous, 1 year ago

Q. If k is the ratio of the roots of the equation x² - ax + b=0, then the value of  \frac{ {k}^{2} + 1}{k}

Answers

Answered by Yuichiro13
23
___________________________________________________________

♦♦ Quadratic Resolution ♦♦

→ ( x² - ax + b ) = 0

→ Let the roots be : x₁ and x₂ , and 'k' be their ratio

◙ Sum of Roots = -( coefficient of x ) ÷ ( coefficient of x² ) = -( - a ) = a

◙ Product of Roots = ( constant term ) ÷ ( coefficient of x² ) = b

=> ( Sum of Roots )² ÷ ( Product of Roots ) = ( a² ÷ b )

-\ \textgreater \ \frac{( x_1 + x_2 )^2 }{x_1 x_2} = \frac{a^2}{b} \\ \\ =\ \textgreater \ \frac{ x_1^2 + x_2^2 + 2x_1 x_2 }{x_1 x_2} = \frac{a^2}{b} \\ \\ =\ \textgreater \ \frac{x_1}{x_2} + \frac{x_2}{x_1}+ 2 = \frac{a^2}{b} \\ \\ =\ \textgreater \ k + \frac{1}{k} = \frac{a^2 - 2b}{b}

=> ( k² + 1 ) ÷ k  = ( a² - 2b ) / b
__________________________________________________________

→ Just Ping me anytime :v:
Answered by HarishAS
38
Hey friend, Harish here.

Here is your answer:

Given that,

→ x² - ax + b = 0

→ k  is the ratio of their roots.

To find,

The value of  \frac{k^{2}+1}{k}

Solution:

Let the roots of the equation be α , β respectively.

And general form of a quadratic equation is px² + qx + r = 0

In the given equation p = 1, q = (-a) , r = b

Then , We know that,

Sum\ of\ roots =   \frac{-q}{p}

⇒  \alpha +  \beta = \frac{-(-a)}{1} =  \frac{a}{1} = a

Product\ of\ roots =  \frac{r}{p}

⇒  \alpha \times  \beta =  \frac{b}{1} = b

Ratio\ of\ roots = \frac{ \alpha }{ \beta } = k

Now, 

 \frac{k^{2} + 1}{k} =  k + \frac{1}{k}

Now substitute the value of k, 

k + \frac{1}{k} =  \frac{ \alpha }{ \beta } +  \frac{ \beta }{ \alpha }

⇒  \frac{ \alpha }{ \beta } +  \frac{ \beta }{ \alpha } =  \frac{( \alpha )^{2}+( \beta )^{2} }{( \alpha  \beta )}

⇒   \frac{( \alpha)^{2} + ( \beta )^{2}}{( \alpha  \beta )} =  \frac{( \alpha + \beta )^{2} - 2( \alpha  \beta )}{ \alpha  \beta }

Now substitute the values of ( α + β) & (αβ)

 ⇒ \frac{( \alpha + \beta )^{2} - 2( \alpha \beta )}{ \alpha \beta } =  \frac{(a)^{2}-2(b)}{b}

Therefore: \bold{\frac{k^{2}+1}{k} = \frac{a^{2}-2b}{b}  }
______________________________________________

Hope my answer is helpful to you.

Similar questions