Math, asked by simran1523, 1 month ago

Q. If the sum of first 10 terms and the sum of first 100 terms of an ap are 100 and 10 respectively then find the sum of first 110 terms​

Answers

Answered by Anonymous
4

Answer:

Leta

Leta 1

=

= 2

= 2n

= 2n

= 2n [2a

= 2n [2a 100

= 2n [2a 100

= 2n [2a 100 [2a+99d]

= 2n [2a 100 [2a+99d]=50[2a+99d]=−1−−−−(1)

= 2n [2a 100 [2a+99d]=50[2a+99d]=−1−−−−(1)eveventerms

50

50

50 [2(a+d)+49×2d]=1

50 [2(a+d)+49×2d]=125(2a+2d+98d)=1

50 [2(a+d)+49×2d]=125(2a+2d+98d)=125(2a+100d)=1−−−−(2)

50 [2(a+d)+49×2d]=125(2a+2d+98d)=125(2a+100d)=1−−−−(2)Fromequation(1)and(2)weget

50 [2(a+d)+49×2d]=125(2a+2d+98d)=125(2a+100d)=1−−−−(2)Fromequation(1)and(2)wegets=

50 [2(a+d)+49×2d]=125(2a+2d+98d)=125(2a+100d)=1−−−−(2)Fromequation(1)and(2)wegets= 50

50 [2(a+d)+49×2d]=125(2a+2d+98d)=125(2a+100d)=1−−−−(2)Fromequation(1)and(2)wegets= 503

50 [2(a+d)+49×2d]=125(2a+2d+98d)=125(2a+100d)=1−−−−(2)Fromequation(1)and(2)wegets= 503

50 [2(a+d)+49×2d]=125(2a+2d+98d)=125(2a+100d)=1−−−−(2)Fromequation(1)and(2)wegets= 503

Similar questions