Q) If the zeroes of the polynomial
x³-3x²+x+1 are a-b, a, a+b, find a and b ??
Best answer required !!
Answers
Answered by
79
Solution is given below⬇️⬇️⬇️⬇️
zeroes of a cubic polynomial are:-
α+β+℘=-b/a
substituting the values.
a-b+a+a+b=3
3a=3
a=1
αβ+β℘+℘α=c/a
(a-b)(a)+(a)(a+b)+(a-b)(a+b)=1
a^2-ba+a^2+ab+a^2-b^2=1
3a^2-b^2=1
put value of a=1
-b^2=1-3=-2
b=√2
Tysm❣️✌️
Answered by
74
Answer:
→ a = 1 and b = ±√2 .
Step-by-step explanation:
Given polynomial is f(x) = x³ - 3x² + x + 1 .
Here a = 1 , b = -3 , c = 1 , d = 1 .
Let α = ( a - b ) , β = a and γ = ( a + b ) .
As we know,
→ α + β + γ = -b/a .
⇒ ( a - b ) + a + ( a - b ) = -(-3)/1 .
⇒ 3a = 3 .
⇒ a = 3/3 .
∴ a = 1 .
And,
→ αβ + βγ + γα = c/a .
⇒ a( a - b ) + a( a + b ) + ( a + b )( a - b ) = 1/1 .
⇒ a² - ab + a² + ab + a² - b² = 1 .
⇒ 3a² - b² = 1 .
⇒ ( 3 × 1² ) - b² = 1 . { ∵ a = 1 }
⇒ 3 - b² = 1 .
⇒ b² = 3 - 1 .
⇒ b² = 2 .
∴ b = ±√2 .
Hence, it is solved .
Satyamrajput:
The End......xD
Similar questions