Math, asked by shankersharma1979, 1 year ago

Q no 1 on attached photo

Attachments:

Answers

Answered by Anonymous
7

refer to the attachment for your answer.

laws of exponents used :-

  • a^-b = (1/b)^b

  • √(a)^b = b√a

Attachments:

Anonymous: hi
Anonymous: ??
Anonymous: please unblock me plz :allo:crying:
Anonymous: plz I be* u
Anonymous: plz inbox thing to talk!! rose don't make me to cry
Anonymous: rose?
Anonymous: plz
Anonymous: plz don't make me to cry_/\_
Answered by AbhijithPrakash
5

Answer:

\mathrm{Simplify}\:\sqrt{\left(81\right)^{-2}}:\quad \dfrac{1}{81}\quad \left(\mathrm{Decimal:\quad }\:0.01235\dots \right)

Step-by-step explanation:

\sqrt{\left(81\right)^{-2}}

\sqrt{a}=a^{\dfrac{1}{2}}

=\left(81^{-2}\right)^{\dfrac{1}{2}}

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

=81^{\left(-2\right)\dfrac{1}{2}}

\left(-2\right)\dfrac{1}{2}

\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a

=-2\cdot \dfrac{1}{2}

\mathrm{Multiply\:fractions}:\quad \:a\cdot \dfrac{b}{c}=\dfrac{a\:\cdot \:b}{c}

=-\dfrac{1\cdot \:2}{2}

\mathrm{Cancel\:the\:common\:factor:}\:2

=-1

=81^{-1}

\mathrm{Apply\:exponent\:rule}:\quad \:a^{-1}=\dfrac{1}{a}

=\dfrac{1}{81}

Similar questions