Math, asked by Itzheartcracer, 30 days ago

Q. No. 9: Show that 2sin²β + 4 cos (α + β) sin α sin β + cos 2 (α + β) = cos 2α.

Answers

Answered by py5024131
7

Answer:

1) sin 2α

2) cos 2β

3) cos 2α

4) sin 2β

Answer: (3) cos 2α

Solution:

2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β)

Using the formula cos(x + y) = cos x cos y – sin x sin y,

= 2 sin2β + 4 (cos α cos β – sin α sin β) sin α sin β + (cos 2α cos 2β – sin 2α sin 2β)

= 2 sin2β + 4 sin α cos α sin β cos β – 4 sin2α sin2β + cos 2α cos 2β – sin 2α sin 2β

= 2 sin2β + sin 2α sin 2β – 4 sin2α sin2β + cos 2α cos 2β – sin 2α sin 2β

Using the formula cos 2x = 1 – 2 sin2x,

= (1 – cos 2β) – (2 sin2α) (2 sin2β) + cos 2α cos 2β

= (1 – cos 2β) – (1 – cos 2α) (1 – cos 2β) + cos 2α cos 2β

= 1 – cos 2β – 1 + cos 2β + cos 2α – cos 2α cos 2β + cos 2α cos 2β

= cos 2α

Answered by SparklingBoy
10

《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》

▪To Prove :-

2sin²β + 4 cos (α + β) sin α sin β + cos 2 (α + β) = cos 2α.

___________________________

▪Formulae Used :-

☆1》 cos (x + y) = (cos x cos y – sin x sin y)

☆2》 (2sin x cos x) = sin2x

☆3》 2sin²x = 1 - cos2x.

___________________________

▪Proof :-

LHS

= 2 sin² β + 4 cos (α + β) sin α sin β + cos 2(α + β)

= 2 sin² β + 4 (cos α cos β – sin α sin β) sin α sin β + cos(2α + 2β)

= 2 sin² β + (4cos α cos β – 4 sin α sin β) sin α sinβ + cos 2α cos 2β – sin 2α sin 2β

= 2 sin² β + 4 sin α cos α sin β cos β – 4 sin² α sin² β + cos 2α cos 2β – sin 2α sin 2β

= 2 sin² β + (2sin α cos α)(2sin β cos β)– 4 sin² α sin² β + cos 2α cos 2β – sin2α sin2β

= 2 sin² β + sin 2α sin 2β – 4 sin² α sin² β + cos 2α cos 2β – sin2α sin2β

= (1 – cos 2β) – (2 sin2 α) (2 sin2 β) + cos 2α cos 2β 

= (1 – cos 2β) – (1 – cos 2α) (1 – cos 2β) + cos 2α cos 2β

= cos 2α

= RHS

\color{magenta}\huge\mathfrak{  \text{H}ence \:   \: Proved}

Similar questions