Math, asked by Anonymous, 4 months ago

qυєsтıση :-

Evaluate

\: \: \: \: \: \: \: \: \bullet\bf\: \: \: {\bigg( i^{41} + \dfrac{1}{i^{257}} \bigg) {}^9}


Here,
⠀⠀⠀⠀⠀❏ i = iota


⚠️No spamming⚠️
⚠️Need quality answer⚠️​

Answers

Answered by user0888
13

The cycle of i

i is a number such that i^2=-1.

Then, it satisfies i^4=1. And then i^{4k}=1.

1 is a number that the product equals the previous number.

Hence

  • i^{4k+1}=i
  • i^{4k+2}=-1
  • i^{4k+3}=-i
  • i^{4k}=1

It cycles every 4th number.

Now, what numbers are i^{41} and i^{257}? Let's focus on the remainder.

41=4\times 10+1, the remainder of 1, then i^{41}=i.

257=4\times 64+1, the remainder of 1, then i^{257}=i.

Hence,

(i+\dfrac{1}{i} )^9

=(i+\dfrac{1\times i}{i\times i} )^9

=(i+\dfrac{i}{-1} )^9

=(i-i)^9

=0

And hence, the value of (i^{47}+\dfrac{1}{i^{257}})^9=0.

More information

We can find out \sqrt{i} cycles every 8th number using the same logic since (\sqrt{i} )^8=1.

Let's calculate the powers.

  • (\sqrt{i} )^{8k+1}=\sqrt{i}
  • (\sqrt{i} )^{8k+2}=i
  • (\sqrt{i} )^{8k+3}=i\sqrt{i}
  • (\sqrt{i} )^{8k+4}=-1
  • (\sqrt{i} )^{8k+5}=-\sqrt{i}
  • (\sqrt{i} )^{8k+6}=-i
  • (\sqrt{i} )^{8k+7}=-i\sqrt{i}
  • (\sqrt{i} )^{8k}=1

Adding everything gives 0.

So,

(\sqrt{i} )+(\sqrt{i} )^{2}+(\sqrt{3} )^{3}+(\sqrt{i} )^{4}+(\sqrt{i} )^{5}+(\sqrt{i} )^{6}+(\sqrt{i} )^{7}+(\sqrt{i} )^{8}=0

Answered by TheWonderWall
13

\large\sf\underline{Given}

\: \: \: \: \: \: \: \: \bullet\bf\: \: \: {\bigg( i^{41} + \dfrac{1}{i^{257}} \bigg) {}^9}

\large\sf\underline{Solution}

\sf\:(i^{41}+\frac{1}{i^{257}})^{9}

Now let's first compute \sf\:i^{41} :

\sf\:i^{41}

\sf⟹\:i^{4 \times 10 + 1}

\sf⟹\:(i^{4})^{10} \times i^{1}

\sf⟹\:(1)^{10} \times i

\sf⟹\:1 \times i

\sf⟹\:i

So \small{\underline{\boxed{\mathrm\purple{i^{41}=i}}}}

Now again let's compute \sf\:i^{257} :

\sf\:\frac{1}{i^{257}}

\sf⟹\:\frac{1}{i^{4 \times 64+1}}

\sf⟹\:\frac{1}{(i^{4})^{64} \times i^{1}}

\sf⟹\:\frac{1}{(1)^{64} \times i^{1}}

\sf⟹\:\frac{1}{1 \times i^{1}}

\sf⟹\:\frac{1}{i}

Now dividing and multiplying the expression by i :

\sf\:\frac{1 \times i}{i \times i}

\sf⟹\:\frac{i}{i^{2}}

\sf⟹\:\frac{i}{-1}

\sf⟹\:-i

So \small{\underline{\boxed{\mathrm\purple{i^{257}=-i}}}}

Now substituting the value of \sf\:i^{41} and \sf\:i^{257} in the given expression we get :

\: \: \: \: \: \: \: \: \bullet\bf\: \: \: {\bigg( i^{41} + \dfrac{1}{i^{257}} \bigg) {}^9}

\sf⟹\:(i^{41}+\frac{1}{i^{257}})^{9}

\sf⟹\:[i+(-i)]^{9}

\sf⟹\:[i-i]^{9}

\sf⟹\:[0]^{9}

\sf⟹\:0

‎ ‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎‎ ‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎ ‎ ━━━━━━━━━━━━━━━━

{\sf{{\pink{More\:to\:know:}}}}

  • \small{\underline{\boxed{\mathrm\red{i=\sqrt{-1}}}}}

  • \small{\underline{\boxed{\mathrm\red{i^{2}=-1}}}}

  • \small{\underline{\boxed{\mathrm\red{i^{3}=-i}}}}

  • \small{\underline{\boxed{\mathrm\red{i^{4}=1}}}}

‎ ‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎‎ ‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎ ‎ ━━━━━━━━━━━━━━━━

Thnku :)

Similar questions