Math, asked by Anonymous, 4 months ago

qυєsтıση :-

★ Evaluate -

\: \: \: \: \: \: \: \: \bullet\bf\: \: \: {\lim_{h \rightarrow 0}\: \dfrac{1}{h} \bigg\lgroup \dfrac{1}{\sqrt{x + h}} - \dfrac{1}{\sqrt{x}} \bigg\rgroup }


⚠️Don't Spam⚠️​

Answers

Answered by rkcomp31
10

Answer:

Answer = -1 /2x√x

Step-by-step explanation:

Attachments:
Answered by mathdude500
8

\large\underline\purple{\bold{Solution :-  }}

 \rm \: {\lim_{h \rightarrow 0}\: \dfrac{1}{h} \bigg\lgroup \dfrac{1}{\sqrt{x + h}} - \dfrac{1}{\sqrt{x}} \bigg\rgroup }

On substituting the value of x = 0, we get indeterminant form, so we can't solve it directly by direct substitution.

Take out LCM, we get

  = \rm \: {\lim_{h \rightarrow 0}\: \dfrac{1}{h} \bigg\lgroup \dfrac{ \sqrt{x} -  \sqrt{x + h}  }{\sqrt{x + h} \sqrt{x} } \bigg\rgroup }

  = \rm \lim_{h \rightarrow 0}\dfrac{1}{ \sqrt{x}  \sqrt{x + h} }  \times \rm  \: \lim_{h \rightarrow 0}\dfrac{ \sqrt{x}  -  \sqrt{x + h} }{h}

 =  \rm \: \dfrac{1}{ \sqrt{x} }  \times \dfrac{1}{ \sqrt{x} } \lim_{h \rightarrow 0}\dfrac{ \sqrt{x} -  \sqrt{x + h}  }{h}  \times \dfrac{ \sqrt{x} +  \sqrt{x + h}  }{ \sqrt{x} +  \sqrt{x + h}  }

 =  \rm \: \dfrac{1}{x} \lim_{h \rightarrow 0}\dfrac{x - (x + h)}{h( \sqrt{x + h}  +  \sqrt{x}) }

 =  \rm \: \dfrac{1}{x} \lim_{h \rightarrow 0}\dfrac{ - \cancel h}{ \cancel{h}( \sqrt{x + h}  +  \sqrt{x}) }

 =  \rm \: \dfrac{1}{x} \lim_{h \rightarrow 0}\dfrac{ - 1}{( \sqrt{x + h}  +  \sqrt{x}) }

 =  \rm \:   - \dfrac{1}{x}  \times \dfrac{1}{ \sqrt{x}  +  \sqrt{x} }

 =  \rm \:  - \dfrac{1}{2x \sqrt{x} }

\rm :\implies\: \boxed{ \pink{ \sf \:   \rm \: {\lim_{h \rightarrow 0}\: \dfrac{1}{h} \bigg\lgroup \dfrac{1}{\sqrt{x + h}} - \dfrac{1}{\sqrt{x}} \bigg\rgroup }\:  =  \tt \: - \dfrac{1}{2x \sqrt{x} }  }}

Additional Information :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{sin \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{tan \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ log(1 + x) }{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {e}^{x}  \:  -  \: 1}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {a}^{x}  \:  -  \: 1}{x} \:  =  \:  log(a)  }}}}}} \\ \end{gathered}

Similar questions