Math, asked by sakalakaboom555, 1 month ago

Q.Solve and verify the following [email protected](2x+5)=3x-2

with the verification pls.​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given linear equation is

\rm :\longmapsto\:7x - (2x + 5) = 3x - 2

Open the brackets and change the sign of inside, as outside there us negative sign.

So, we get

\rm :\longmapsto\:7x - 2x  - 5 = 3x - 2

\rm :\longmapsto\:5x  - 5 = 3x - 2

\rm :\longmapsto\:5x  - 3x = 5 - 2

\rm :\longmapsto\:2x = 3

\rm \implies\:\boxed{ \tt{ \:  \: x  \:  =  \:  \frac{3}{2} \:  \: }}

Verification :-

Given linear equation is

\rm :\longmapsto\:7x - (2x + 5) = 3x - 2

Consider, LHS

\rm :\longmapsto\:7x - (2x + 5)

On substituting the value of x, we get

\rm \:  =  \:7 \times \dfrac{3}{2} - \bigg[2 \times \dfrac{3}{2} + 5\bigg]

\rm \:  =  \: \dfrac{21}{2} - \bigg[3 +  5\bigg]

\rm \:  =  \: \dfrac{21}{2} -(8)

\rm \:  =  \: \dfrac{21}{2} - 8

\rm \:  =  \: \dfrac{21 - 16}{2}

\rm \:  =  \: \dfrac{5}{2}

Now, Consider RHS

\rm :\longmapsto\: 3x - 2

On substituting the value of x, we get

\rm \:  =  \:3 \times \dfrac{3}{2}  - 2

\rm \:  =  \: \dfrac{9}{2}  - 2

\rm \:  =  \: \dfrac{9 - 4}{2}

\rm \:  =  \: \dfrac{5}{2}

Hence, LHS = RHS

Thus, Verified

Answered by akeertana503
8

\huge\sf\underline\red{Solution}

 \\  \\

______________________________________

7x - (2x + 5) = 3x - 2 \\  \\ 7x - 2x - 5 = 3x - 2 \\  \\ 5x - 5 = 3x - 2 \\  \\ 5x - 3x =  - 2 + 5 \\  \\ 2x = 3  \\  \\ x =  \frac{3}{2}  \\  \\

______________________________________

\huge\sf\underline\green{Verification}

7( \frac{3}{2} ) - (2 \times  \frac{3}{2}  + 5) = 3( \frac{3}{2} ) - 2 \\  \\    \frac{21}{2}  - 8 =  \frac{9}{2}  - 2 \\  \\  \frac{21 - 16}{2}  =  \frac{9 - 4}{2}  \\  \\  \frac{5}{2}  =  \frac{5}{2}  \\  \\ \:LHS \:  =  \: \: RHS \: \:  \\  \\ hence \:  \: verified \:

______________________________________

Similar questions