Math, asked by AnnaWilliams, 2 months ago

Q) The Value of a for which the sum of squares of the roots of the equation
 {x}^{2}  - (a - 2)x - a - 1 = 0
assume the least value

Answers

Answered by SparklingBoy
28

Answer :-) 1

Solution :-)

\sf Let \:  \alpha  \: and \:  \beta  \: be \: the \\ \sf roots \: of \: equation \\ \sf  \text {x}^{2}  - \text (a - 2)  \text x - a - 1 = 0 \\  \\  \sf Then \\  \\  \sf Sum \: of \: roots \:  =  \alpha   + \beta  = a  - 2 \\  \\  \sf Product \: of \: roots =  \alpha  \beta  - a - 1 \\  \\  \sf \: as  \\  \\  \sf { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )  }^{2}  - 2 \alpha  \beta  \\  \\  \implies { \alpha }^{2}  +  { \beta }^{2}  = (a - 2) {}^{2}  + 2(a + 1) \\  \\  \implies { \alpha }^{2}  +  { \beta }^{2}  = {a}^{2}  - 2a + 6 \\  \\  \implies { \alpha }^{2}  +  { \beta }^{2}  =(a - 1) {}^{2}  + 5 \\ \\   \sf So \: the \: value \: of \:  { \alpha }^{2}  +  { \beta }^{2}  \: will \: be \: least \\  \\  \sf if \: a - 1 = 0 \\  \\  \huge \implies   \bold \red{ \boxed{ \boxed{a = 1}}}

Alternate Solution :-)

 \sf As \:   \:  \: \alpha  +  \beta  = a - 2 \\  \\  \sf  and  \:  \: \: \alpha  \beta  =  - a - 1 \\  \\ \sf Let  \\  \sf f(a) =  { \alpha }^{2}  +  { \beta }^{2}  = ( \alpha   + \beta ) {}^{2}  - 2 \alpha  \beta  \\  \\  = (a - 2) {}^{2}  + 2(a + 1) =  {a}^{2}  - 2a + 6 \\  \\  \implies \sf f '(a) = 2a - 2

For Maxima and Manima Put f'(a) = 0

2a - 2 = 0 \\  \\ a = 1 \\  \\  \sf now \:  \: f''(a) = 2 \\  \\  \implies \sf f''(1) = 2 > 0

So f(a) is minimum at a = 1

Answered by BrainlyRish
39

\qquad \qquad \underline{\pmb{\mathbb{\bigstar \:\:\:POLYNOMIAL \:\::}{\: x^2 \:-\: ( \:a - 2 )x\: - a - 1  \: \:\:}}}\\\\

As , We know that ,

\qquad \underline {\boxed {\pmb{ \:\maltese \:Sum \:\: of \:\:zeroes \:\:\purple{ \:(\: \alpha + \beta \;)\:} \:: \: }}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:+\:\beta \:\Big\} \: \:=\:\dfrac{ - \:( Cofficient \:of \: x \:)\:}{Cofficient \:of \:x^2 \:} \\\\\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:+\:\beta \:\Big\}\:\:=\:\:\:\:\dfrac{ - \:( Cofficient \:of \: x \:)\:}{Cofficient \:of \:x^2 \:}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:+\:\beta \:\Big\}\:\:=\:\:\:\:\dfrac{ - \:\big[ -\{ a - 2 \:\}\big]\:}{1 \:}\\\\\dashrightarrow \sf \: \alpha \:+\:\beta \: \:\:=\:\:\dfrac{ ( a - 2 )}{1}\\\\\dashrightarrow \sf \: \alpha \:+\:\beta \: \:\:=\:\:a - 2 \:\\\\\dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \: \alpha \:+\:\beta \: \:\:=\:\:a - 2  \:\:}}}}}\:\:\bigstar \\\\

⠀⠀⠀⠀⠀AND ,

\qquad \underline {\boxed {\pmb{ \:\maltese \:Product \:\: of \:\:zeroes \:\:\purple{ \:(\: \alpha \beta \;)\:} \:: \: }}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:\:\beta \:\Big\} \: \:=\:\dfrac{ \:Constant \:Term\:}{Cofficient \:of \:x^2 \:} \\\\\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:\:\beta \:\Big\}\:\:=\:\:\:\:\dfrac{ Constant \:Term\:}{Cofficient \:of \:x^2 \:}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:\:\beta \:\Big\}\:\:=\:\:\:\:\dfrac{ -(  a - 1 )\:}{1 \:}\\\\\dashrightarrow \sf \: \alpha \:\:\beta \: \:\:=\:\:\dfrac{-( a - 1 )}{1}\\\\\dashrightarrow \sf \: \alpha \:+\:\beta \: \:\:=\:\:-( a - 1) \:\\\\ \dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \: \alpha \:\:\beta \: \:\:=\:\: a + 1  \:\:}}}}}\:\:\bigstar \\\\

━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀¤ Finding Minimum value of a for sum of squares of the roots ( α²+β² ) :

\qquad \dashrightarrow \sf \alpha ^2 + \beta^2 \:\\\\

As , we know that ,

\qquad \dag\:\:\bigg\lgroup \sf{ Algebraic \:Indentity \:\:: a^2 + b^2 =\:( a + b )^2 - 2ab }\bigg\rgroup \\\\\qquad \dashrightarrow \sf \alpha ^2 + \beta^2 \:\\\\\qquad \dashrightarrow \sf \alpha ^2 + \beta^2 \:=\: ( \alpha + \beta )^2 - 2 \alpha \beta \:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf \alpha ^2 + \beta^2 \:=\: ( \alpha + \beta )^2 - 2 \alpha \beta \:\\\\

\qquad \dashrightarrow \sf \alpha ^2 + \beta^2 \:=\: ( a - 2 )^2 - 2 ( a + 1 )\:\\\\\qquad \dashrightarrow \sf \alpha ^2 + \beta^2 \:=\: a^2 - 2a + 6\:\\\\\qquad \dashrightarrow \sf \alpha ^2 + \beta^2 \:=\: ( a -1 )^2 + 5 \:\\\\

⠀⠀⠀⠀⠀We have to find minimum value :

Therefore ,

\qquad \dashrightarrow \sf \alpha ^2 + \beta^2 \:=\: ( a -1 ) \:\\\\\qquad \dashrightarrow \sf ( a - 1 ) \:\:  \:\\\\\qquad \dashrightarrow \sf a \:=\: 1 \:\\\\\dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \: a\: \:\:=\:\:1  \:\:}}}}}\:\:\bigstar \\\\

\qquad\therefore \underline {\sf Hence,  \:The \:Value \:of \:a \:is \:\pmb{\bf 1 }\:\:}\\\\

Similar questions