Math, asked by Mannat306, 11 months ago

Q) Two sides of parallelogram are 40 cm and 50 cm. If the altitude corresponding to the sides of length 50 cm is 20 CM. find the altitude corresponding to the other pair of side. ​

Answers

Answered by AngeliCat
3

\star\small\sf\underline\blue{Given:-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Two sides of parallelogram are 40 cm and 50 cm. If the altitude corresponding to the sides of length 50 cm is 20 cm.

______________________

\star\small\sf\underline\blue{Find \: Out:-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • The altitude corresponding to the other pair of sides = ?

______________________

\star\small\sf\underline\blue{Solution:-}

  • Length of one side of parallelogram = 50 cm
  • Corresponding altitude = 20 cm

Area of parallelogram = 50 × 20

Area of parallelogram = 1000 cm² ...... (i)

  • Length of other side of parallelogram = 40 cm

Let corresponding altitude be y cm.

Area of parallelogram = 40y cm² ...... (ii)

\footnotesize\bold{\underline{\underline{\sf{\red{From\:(i)\:and\:(ii)\: ,}}}}}\\\\

 \implies \sf40y = 1000 \\  \\  \implies \sf \: y =   \cancel\dfrac{1000}{40}  \\  \\  \implies \sf \: y =  \ \cancel \dfrac{500}{20}  \\  \\  \implies \sf \: y =   \cancel\dfrac{250}{10}  \\  \\  \implies \sf \: y =    \cancel\dfrac{125}{5}  \\  \\  \implies \sf \: y =  \boxed {\bf \: 25 \: cm}

______________________

\star\small\sf\underline\blue{AnswEr:-}

  • The altitude corresponding to the other pair of sides is 25 cm.
Answered by Anonymous
131

Q1. Two sides of parallelogram are 40 cm and 50 cm. If the altitude corresponding to the sides of length 50 cm is 20 CM. find the altitude corresponding to the other pair of side.

Given ::-

  • Sides of parallelogram = 40cm , 50 cm.

  • Altitude corresponding to sides of length 50 cm is 20 cm

To find ::-

  • find the altitude corresponding to the other pair of side?

Formula used ::-

Area of llgm = Base × height

Area = 50 × 20

Area = 1000 {cm}^{2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀[ Equation - 1]

_____________

Area of llgm = Base × height

Let the height be g

Area = 40 × g

Area = 40g {cm}^{2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀[ Equation - 2]

Adding both the equations ::-

40g {cm}^{2} = 1000 {cm}^{2}

40g = 1000

g = \dfrac{1000}{40}

g = \dfrac{\cancel{1000}}{\cancel{40}}

g = 25 cm

Hence , altitude corresponding to the other pair of side is 25cm.

Similar questions