Math, asked by Rizakhan49, 1 month ago

Q : Verify that x^3 + y^3 + z^3 – 3xyz = 1/2 ( x + y + z ) [ ( x – y )^2 + ( y – z)^2 + ( z – x )^2 ]

Class : 9th
Chapter : Polynomials

Answers

Answered by AestheticSky
35

 \\  \large   \maltese \: \underbrace{ \pmb{ \sf Solution :  - }}

 \\   \quad \qquad \dag \:  \underline{ \sf LHS :  - } \\

 \\  \bullet \quad  \sf {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz \\

 \\   \quad \qquad \dag \:  \underline{ \sf RHS :  - } \\

 \\  \bullet  \quad \sf  \frac{1}{2} (x + y + z) \bigg[{(x - y)}^{2}  +  {(y - z)}^{2}  +  {(z - x)}^{2} \bigg]  \\

Let's Solve the RHS part by using the following two identities :-

 \\  \leadsto \underline{ \boxed{  \sf{(a - b)}^{2}  =  {a}^{2} +  {b}^{2}   - 2ab}} \bigstar \\

 \\  \leadsto \underline{ \boxed{ \sf  {x}^{3} +  {y}^{3} +  {z}^{3} = (x + y + z)( {x}^{2} +  {y}^{2} +  {z}^{2}   -  xy - yz - zx)   }} \bigstar \\

Let's get started !!

 \\   \rightarrow \sf  \frac{1}{2} (x + y + z) \bigg[  {(x - y)}^{2}  +  {(y - z)}^{2}  +  {(z - x)}^{2} \bigg] \\

 \\   \rightarrow \sf  \frac{1}{2} (x + y + z) \bigg[ ( {x}^{2} +  {y}^{2}  - 2xy) + ( {y}^{2}   +  {z}^{2}   - 2yz) + ( {z}^{2} +  {x}^{2}   - 2xz)\bigg] \\

 \\  \rightarrow\sf  \frac{1}{2} (x + y + z) \bigg[  {x}^{2} +  {y}^{2} - 2xy +  {y}^{2}  +  {z}^{2}  - 2yz +  {z}^{2}   +  {x}^{2}   - 2zx\bigg] \\

 \\   \rightarrow \sf  \frac{1}{2} (x + y + z) \bigg[ 2 {x}^{2} + 2 {y}^{2}   + 2 {z}^{2} - 2xy - 2yz - 2zx \bigg] \\

 \\   \rightarrow \sf  \frac{1}{2} (x + y + z) \times 2 \bigg [{x}^{2} +  {y}^{2}  +  {z}^{2}   - xy - yz - zx ) \bigg] \\

 \\   \rightarrow \sf (x + y + z) \bigg[ {x}^{2}  +  {y}^{2} +  {z}^{2}   - xy - yz - zx \bigg] \\

 \\   \rightarrow  \boxed{\sf  {x}^{3}  +  {y}^{3} +  {z}^{3}  - 3xyz } \bigstar   \\

___________________________


Anonymous: Grêåt
Similar questions