Math, asked by vishals3k, 5 months ago

Q1 ABC, is right angled at C. If p is the length of the perpendicular from C to AB and a, b, c are the lengths of the sides opposite ∠A,∠B, ∠C respectively then prove that 1/p^2 =1/a^2 +1/b^2​

Answers

Answered by mathdude500
1

❥︎Question :-

  • ABC, is right angled at C. If p is the length of the perpendicular from C to AB and a, b, c are the lengths of the sides opposite ∠A,∠B, ∠C respectively then prove that 1/p^2 =1/a^2 +1/b^2.

❥︎Answer :-

❥︎Given :-

  • ABC, is right angled at C.
  • p is the length of the perpendicular from C to AB
  • a, b, c are the lengths of the sides opposite ∠A,∠B, ∠C respectively.
  • It implies, AB = c, BC = a, CA = b.

❥︎To prove :-

\bf \:\dfrac{1}{ {p}^{2} }  = \dfrac{1}{ {a}^{2} }  + \dfrac{1}{ {b}^{2} }

❥︎Concept used :-

Pythagoras Theorem

\begin{gathered}{\boxed{\bf{\pink{(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2}}}}\end{gathered}

\boxed{\bf \:Area \:  of  \: triangle = \dfrac{1}{2}  \times base \times height}

❥︎Solution :-

⟶ In right triangle ABC

\boxed{\bf \:Area \:  of  \: triangle = \dfrac{1}{2}  \times base \times height}

\bf\implies \:Area \:  of  \: triangle = \dfrac{1}{2}   \times BC \times CA

\bf\implies \:Area \:  of  \: triangle = \dfrac{1}{2}   \times a \times b \: ⟶ \: (1)

❥︎Also, In triangle ABC,

\bf \:Area \:  of  \: triangle = \dfrac{1}{2}   \times AB \times p

\bf\implies \:Area \:  of  \: triangle = \dfrac{1}{2}   \times c \times p \: ⟶ \: (2)

❥︎On equating equation (1) and (2), we get

\bf\implies \:\dfrac{1}{2}  \times a \times b = \dfrac{1}{2}  \times c \times p

\bf \:⟶ \: ab = pc

\bf\implies \:c = \dfrac{ab}{p}  \: ⟶ \: (3)

❥︎ In right triangle ABC,

⟶ Using pythagoras theorem,

\bf \: {CA}^{2}  +  {BC}^{2}  =  {AB}^{2}

\bf\implies \: {a}^{2}  +  {b}^{2}  =  {c}^{2}

⟶ On substituting the value of c from eq(3), we get

\bf\implies \: {a}^{2}  +  {b}^{2}  =  ({\dfrac{ab}{p} })^{2}

\bf\implies \: {a}^{2}  +  {b}^{2}  = \dfrac{ {a}^{2}  {b}^{2} }{ {p}^{2} }

⟶ Divide both sides by a²b², we get

\bf\implies \:\dfrac{ {a}^{2} }{ {a}^{2}  {b}^{2} }  + \dfrac{ {b}^{2} }{ {a}^{2}  {b}^{2} }  = \dfrac{ {a}^{2}  {b}^{2} }{ {p}^{2}  {a}^{2}  {b}^{2} }

\bf\implies \:\dfrac{1}{ {b}^{2} }  + \dfrac{1}{ {a}^{2} }  = \dfrac{1}{ {p}^{2} }

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

_________________________________________

Similar questions