Math, asked by vishakhadash29, 3 months ago

Q1) Find the maximum and minimum value of the function: x^3 - 3x^2 - 9x + 12​

Answers

Answered by mathdude500
16

Basic Concept Used :-

HOW TO FIND MAXIMUM AND MINIMUM VALUE OF A FUNCTION

Let given function be f(x)

  • Differentiate the given function f(x) w. r. t. x.

For maxima or minima,

  • Put f'(x) = 0 and to get the critical points.

  • Then find the derivative of f'(x) i.e. f''(x)

Apply these critical points in the second derivative.

  • The function f (x) is maximum when f''(x) < 0.

  • The function f (x) is minimum when f''(x) > 0.

Let's solve the problem now!!

Given

\rm :\longmapsto\:f(x) =  {x}^{3}  -  {3x}^{2}  - 9x + 12

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:f'(x) = 3 {x}^{2}  - 6x - 9 -  -  - (1)

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \:  \because \: \dfrac{d}{dx}  {x}^{n} =  {nx}^{n - 1}}

For maxima or minima,

  • Put f'(x) = 0

\rm :\longmapsto\: {3x}^{2}  - 6x - 9 = 0

\rm :\longmapsto\: {x}^{2}  - 2x - 3 = 0

\rm :\longmapsto\: {x}^{2}  - 3x + x - 3 = 0

\rm :\longmapsto\:x(x - 3) + 1(x - 3) = 0

\rm :\longmapsto\:(x - 3)(x + 1) = 0

\rm :\implies\:x = 3 \:  \:  \: or \:  \:  \: x =  -  \: 1

Now, Differentiate equation (1) w. r. t. x, we get

\rm :\longmapsto\:f''(x) = 6x - 9

Case :- 1

When x = 3, we get

\rm :\longmapsto\:f''(3) = 6 \times 3 - 9 = 18 - 9 = 9

\rm :\longmapsto\:f''(3) &gt; 0

\rm :\implies\:f(x) \: is \: minimum \: at \: x \:  =  \: 3

and

\rm :\longmapsto\:Minimum \: value \:  =  \: f(3)

\rm \:  \:  \:  = \:  \:  {(3)}^{3}  - 3{(3)}^{2}  - 9 \times 3  + 12

\rm \:  \:  \:  = \:  \:27 - 27 - 27 + 12

\rm \:  \:  \:  = \:  \: -  \: 15

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \bf \: Minimum \: value \:of \: f(x)  =  \:  -  \: 15}

Case :- 2

When x = - 1, we get

\rm :\longmapsto\:f''( - 1) = 6 \times ( - 1) - 9 =  - 6 - 9 =  - 15

\rm :\longmapsto\:f''( - 1) &lt; 0

\rm :\implies\:f(x) \: is \: maximum \: at \: x \:  =  \:  -  \: 1

and

\rm :\longmapsto\:Maximum \: value \:  =  \: f( - 1)

\rm \:  \:  \:  = \:  \: {( - 1)}^{3}  - 3 {( - 1)}^{2}  - 9( - 1) + 12

\rm \:  \:  \:  = \:  \: - 1 - 3 + 9 + 12

\rm \:  \:  \:  = \:  \:17

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \bf \: Maximum \: value \:of \: f(x)  =   \: 17}

Similar questions