Math, asked by willukissme, 2 months ago

Q1.Find the solution of Differential equation.


y sin(2x)dx−(1+y²+cos²x)dy=0

Answers

Answered by PRINCE100001
6

Step-by-step explanation:

FORMULA TO BE IMPLEMENTED

1. If u & v are two differentiable function then

d(uv) = v \: du + u \: dv</p><p></p><p></p><p>[tex]\displaystyle \int\limits_{}^{} x^{n} \, dx = \frac{ {x}^{n + 1} }{n + 1} + constant </p><p>

EVALUATION

y \sin 2x \: dx - ( 1 + {y}^{2} + { \cos}^{2}x )dy = 0

Multiplying both sides by (-1) we get

- y \sin 2x \: dx + ( 1 + {y}^{2} + { \cos}^{2}x )dy = 0

Rearranging we get

( 1 + {y}^{2} )dy + ( { \cos}^{2}x \: dy \: - y \sin 2x \: dx ) = 0

\implies \: ( 1 + {y}^{2} )dy + \bigg[ { \cos}^{2}x \: dy \: + y \times ( - 2\sin x \cos x\: )dx \bigg ] = 0

On integration

\displaystyle \int\limits_{}^{} ( 1 + {y}^{2} )dy +\displaystyle \int\limits_{}^{} d(y \: { \cos}^{2}x ) = 0 </p><p>

\implies \: \displaystyle \: y + \frac{ {y}^{3} }{3} + y \: { \cos}^{2} x \: = c

Where c is a constant

RESULT

SO THE REQUIRED SOLUTION IS

\boxed{ \: \displaystyle \: y + \frac{ {y}^{3} }{3} + y \: { \cos}^{2} x \: = c} </p><p>

Answered by itzcuteprincess32
1

Answer:

prince mae dhode dino mae leave kar rhi hu

itna to baat karlo please

Similar questions