Math, asked by sapnagaur222, 2 months ago

Q1 ) Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients

(i) 5x²-29x+20
(ii) x²-5x ​

Answers

Answered by Anonymous
9

Step-by-step explanation:

1. 5x² - 29x + 20

= 5x² - 25x - 4x + 20

= 5x(x - 5) -4(x - 5)

= (5x - 4) (x - 5)

 \\

★ Case I

5x - 4 = 0

→ 5x = 4

  \implies \: x \:  =  \dfrac{4}{5}

★ Case II

x - 5 = 0

→ x = 5

 \\

• α =    \frac{4}{5}

• β = 5

 \\

   \large{\green{\bigstar}  \:  \blue{ \textsf{Sum of zeros :}}}

  \large{\orange{  \odot} \:  \pink{\alpha  +  \beta  =  \dfrac{ - b}{a} }}

 \\

» α + β

 \dfrac{4}{5}  + 5

 =  \dfrac{4 + 25}{5}

  = \dfrac{29}{5}

 \\

»

 \dfrac{ -b }{a}

 =  \dfrac{ - ( - 29)}{5}

 =  \dfrac{29}{5}

Proved !

 \\

  \large{ \gray{\bigstar}  \:  \purple{ \textsf{Product of zeros :}}}

\large{  \blue{  \odot} \:  \red{\alpha   \beta  =  \dfrac{ c}{a} }}

 \\

» αβ

 =  \dfrac{4}{5}  \times 5

 = 4

 \\

»  \dfrac{c}{a}

 =  \dfrac{20}{5}

 = 4

Proved !

 \\

______________________________

 \\

2. x² - 5x

= x(x - 5)

 \\

★ Case I

x = 0

 \\

★ Case II

→ x - 5 = 0

→ x = 5

 \\

• α = 0

• β = 5

 \\

   \large{\green{\bigstar}  \:  \blue{ \textsf{Sum of zeros :}}}

  \large{\orange{  \odot} \:  \pink{\alpha  +  \beta  =  \dfrac{ - b}{a} }}

 \\

» α + β

= 0 + 5

= 5

Proved !

 \\

»  \dfrac{ - b}{a}

 =  \dfrac{ - ( - 5)}{1}

= 5

 \\

  \large{ \gray{\bigstar}  \:  \purple{ \textsf{Product of zeros :}}}

\large{  \blue{  \odot} \:  \red{\alpha   \beta  =  \dfrac{ c}{a} }}

 \\

» αβ

= 0 × 5

= 0

 \\

»  \dfrac{c}{a}

= 0

Proved !

Similar questions