Math, asked by JAANU10001, 6 days ago

Q1.Limit x tends to zero 2^x-1/e^2x-1

Answers

Answered by PRINCE100001
13

Step-by-step explanation:

\rm \therefore \displaystyle \large\lim_ { \rm \: x \to \:0 }{ \rm \: \dfrac{ {2}^{x} - 1 }{ {e}^{2x} - 1 } } = \\ </p><p>

If we put x =0 in the above expression then we will get 0/0 form which is an indeterminate form. So, we will apply L'Hospital rule.

\rm \longrightarrow \displaystyle \large\lim_ { \rm \: x \to \:0 }{ \rm \: \dfrac{ \dfrac{d({2}^{x} - 1 )}{dx} }{\dfrac{d( {e}^{2x} - 1 )}{dx} } } </p><p>

\rm \longrightarrow \displaystyle \large\lim_ { \rm \: x \to \:0 }{ \rm \: \dfrac{ \dfrac{d({2}^{x} )}{dx} \: - \dfrac{d(1 )}{dx} }{\dfrac{d( {e}^{2x} )}{dx} - \dfrac{d(1 )}{dx}} }</p><p>

\rm \longrightarrow \displaystyle \large\lim_ { \rm \: x \to \:0 }{ \rm \: \dfrac{ ({2}^{x} )ln2\: - 0 }{2 {e}^{2x} - 0} }

\rm \longrightarrow \displaystyle \large\lim_ { \rm \: x \to \:0 }{ \rm \: \dfrac{ ln2 \: \times ({2)}^{x} \: }{2 \: \times ({e)}^{2x} } } </p><p>

Now put x = 0 :-

\rm \longrightarrow \displaystyle \large { \rm \: \dfrac{ ln2 \: \times ({2)}^{0} \: }{2 \: \times ({e)}^{0} } }</p><p>

\rm \longrightarrow \displaystyle \large { \rm \: \dfrac{ ln2 \: \times 1 \: }{2 \: \times 1 } }</p><p>

\rm \longrightarrow \displaystyle \large { \rm \: \dfrac{ ln2 }{2 } }</p><p>

\rm \therefore \displaystyle \large\lim_ { \rm \: x \to \:0 }{ \rm \: \dfrac{ {2}^{x} - 1 }{ {e}^{2x} - 1 } } = \large { \rm \: \dfrac{ ln2 }{2 } } </p><p>

Additional Information :-

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x

Attachments:
Answered by llPRINCESSSOFIAll
1

Answer:

answer in the attachment.

Step-by-step explanation:

One of the most important agricultural resources is soils. Productive soils allow farmers to obtain high crop yields with the least expense and damage to the environment. In order to be successful, farmers need not only good soils but also need access to open lands suitable for farming.

will you be my friend???

Attachments:
Similar questions