Math, asked by vishalryann56, 5 months ago



Q1- On comparing the ratios, a1/a2,b1/b2 and c1/c2 find out weather the lines representing the following pairs of the linear equations intersect a point, are parallel or coincident and consistent or inconsistent:​

Answers

Answered by Anonymous
9

\huge\boxed{\fcolorbox{red}{black}{❥ANSWER}}

(i) Given expressions;

5x−4y+8 = 0

7x+6y−9 = 0

Comparing these equations with a1x+b1y+c1 = 0

And a2x+b2y+c2 = 0

We get,

a1 = 5, b1 = -4, c1 = 8

a2 = 7, b2 = 6, c2 = -9

(a1/a2) = 5/7

(b1/b2) = -4/6 = -2/3

(c1/c2) = 8/-9

Since, (a1/a2) ≠ (b1/b2)

So, the pairs of equations given in the question have a unique solution and the lines cross each other at exactly one point.

(ii) Given expressions;

9x + 3y + 12 = 0

18x + 6y + 24 = 0

Comparing these equations with a1x+b1y+c1 = 0

And a2x+b2y+c2 = 0

We get,

a1 = 9, b1 = 3, c1 = 12

a2 = 18, b2 = 6, c2 = 24

(a1/a2) = 9/18 = 1/2

(b1/b2) = 3/6 = 1/2

(c1/c2) = 12/24 = 1/2

Since (a1/a2) = (b1/b2) = (c1/c2)

So, the pairs of equations given in the question have infinite possible solutions and the lines are coincident.

(iii) Given Expressions;

6x – 3y + 10 = 0

2x – y + 9 = 0

Comparing these equations with a1x+b1y+c1 = 0

And a2x+b2y+c2 = 0

We get,

a1 = 6, b1 = -3, c1 = 10

a2 = 2, b2 = -1, c2 = 9

(a1/a2) = 6/2 = 3/1

(b1/b2) = -3/-1 = 3/1

(c1/c2) = 10/9

Since (a1/a2) = (b1/b2) ≠ (c1/c2)

So, the pairs of equations given in the question are parallel to each other and the lines never intersect each other at any point and there is no possible solution for the given pair of equations.

Similar questions