Math, asked by simrankujur704, 7 months ago

Q11, If an isosceles triangle having perimeter 30cm and each of equal sides is 12cm, then find the area of triangle


Answers

Answered by prince5132
53

GIVEN :-

  • Perimeter of isosceles triangle = 30 cm.
  • Equal side = 12 cm.

TO FIND :-

  • The area of isosceles triangle.

SOLUTION :-

 \\  : \implies \displaystyle \sf \: Perimeter \: of \:  \triangle =  a + b + c \\

  • a = 12 cm.
  • b = 12 cm.
  • c = ?

 \\  : \implies \displaystyle \sf \:30 = 12 + 12 + c \\  \\  \\

 \\  : \implies \displaystyle \sf \:c = 30 - 24 \\  \\  \\

 \\  : \implies  \underline{ \boxed{\displaystyle \sf \:c = 6 \: cm}} \\  \\

____________________

 \\ \dashrightarrow\displaystyle \sf    Semi - Perimeter \: of \:  \triangle =  \frac{a + b + c}{2}  \\  \\  \\

\dashrightarrow\displaystyle \sf Semi - Perimeter \: of \:  \triangle =  \frac{12 + 12 + 6}{2}  \\  \\  \\

\dashrightarrow\displaystyle \sf Semi - Perimeter \: of \:  \triangle =   \frac{30}{2}  \\  \\  \\

\dashrightarrow \underline{ \boxed{\displaystyle \sf Semi - Perimeter \: of \:  \triangle =  15 \: cm}} \\  \\

___________________

 \\ \longmapsto\displaystyle \sf Area \: of \:  \triangle = \sqrt{s(s - a)(s - b)(s - c)}  \\

  • s = semi - perimeter
  • a = side
  • b = side
  • c = side

 \\ \longmapsto\displaystyle \sf Area \: of \:  \triangle  =  \sqrt{15(15 - 12)(15 - 12)(15 - 6)}  \\  \\  \\

\longmapsto\displaystyle \sf Area \: of \:  \triangle  =  \sqrt{15 \times 3 \times 3 \times 9}  \\  \\  \\

\longmapsto\displaystyle \sf  Area \: of \:  \triangle  = 3 \sqrt{135} \: cm ^{2}  \\ \\

\longmapsto\underline{ \boxed{\displaystyle \sf  Area \: of \:  \triangle  = 9 \sqrt{15} \: cm ^{2}  }} \\ \\

Answered by Anonymous
12

Please refer to the attachment

Attachments:
Similar questions