Math, asked by mc913746, 7 months ago

the lenfth of each side of an quadilatrial triangle having an area of 25route3​

Answers

Answered by Blossomfairy
118

Given :

  • Area of equilateral triangle is 25√3

To Find :

  • Length

According to the question,

  \bigstar \: \purple {\boxed{ \sf {Area \: of \: equilateral  _{ \triangle } =  \dfrac{ \sqrt{3} }{4}  \times  {(side)}^{2}  }}}

Putting the value according to the formula,

 \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \sf{ \dfrac {\cancel { \sqrt{3}} }{4}  \times (Side) {}^{2} = 25  \cancel{\sqrt {3}}  }\\ \\   \: \implies \sf{ \frac{1}{4} \times ( {Side)}^{2}  = 25 }\\  \\ \:\implies \sf{( {Side)}^{2}  = 25 \times 4}  \\  \\\implies\sf{{(Side)}^{2} = 100 } \\ \\ \implies\sf \: Side =  \sqrt{100}   \\ \\\sf\therefore {\boxed  {\sf \red{Side \:  = 10 \: cm}}}

So,the side is 10 cm..

__________...

More formulas :

\bullet \sf{ \:  Area \: of \:  _{ \triangle} =  \sqrt{s(s - a)(s - b)(s - c)} }

\bullet \: \sf{Area \: of \:  reactangle = length \times breadth}

\bullet\sf{ \: Area \: of \: square = side \times side}

\bullet \: \sf{Perimeter \: of \:  _{ \triangle} = sum \: of \: all \: its \: side }

 \bullet\sf{Perimeter \: of \: rectangle =2(length + breadth }

Answered by Anonymous
4

Given: Area of the equilateral triangle = 253 cm²

To Find: Length of each side of the triangle.

We know,

area of an equilateral triangle = (√3)/4 s²

where, s is the length of one side of the triangle.

Let the side be = s

∴ (√3)/4 s² = 25√3

→ s² = 25√3 × 4/√3

→ s² = 25 × 4

→ s = √(25 × 4)

s = 5 × 2 = 10 cm

s = 5 × 2 = 10 cm

∴ Length of a side of the triangle is 10 cm.

Similar questions