Math, asked by paavnikhandelwal, 1 month ago

Q14. If the difference between two complementary angles is 10°, then the angles are: (a) 50°, 60° (b) 50°, 40° (c) 10°, 80° (d) 80°, 10°​

Answers

Answered by abhi569
67

Answer:

option B.

Step-by-step explanation:

     Let those complementary angles be 'x' and 'y'.

We know that sum of complementary angles is 90°

                ∴ x + y = 90°         ...(1)

It is given that their difference is 10°.

                ∴ x - y = 10°          ...(2)

Adding (1) and (2), we get

     x + y = 90°

     x - y  = 10°  

   2x       = 100°  

           x = 50°

Substituting x in (1),   50° + y = 90°

                                ⇒ y = 40°

Therefore, the required angles are 50°, 40°

Answered by MathCracker
47

Question :-

Q14. If the difference between two complementary angles is 10°, then the angles are: (a) 50°, 60° (b) 50°, 40° (c) 10°, 80° (d) 80°, 10°.

Answer :-

  • (b) 50°, 40°

Step by step explanation :-

Let,

  • The complementary angles be x and y.

We know that,

Complementary angles are 90°.

Now, we have given that the difference between two complementary angles is 10°.

The equation becomes,

\rm:\longmapsto{x +  y = 90 \degree -  -  - (1)} \\  \\ \rm:\longmapsto{x - y = 10  \degree -  -  - (2)}

On solving the equations, we get,

\rm:\longmapsto{x + y + (x - y) = 90 + 10} \\  \\ \rm:\longmapsto{2x = 100 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\  \\ \rm:\longmapsto{x =  \frac{100}{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf:\longmapsto \red{x = 50 \degree} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now, substituting x = 50 in equation (1)

\rm:\longmapsto{50 + y = 90} \\  \\ \rm:\longmapsto{y = 90 - 50} \\  \\ \bf:\longmapsto \red{y = 40 \degree} \:  \:  \:  \:  \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions