Math, asked by Prrawat426, 1 year ago

Q15:-If alpha and bita are zeroes of the quadratic polynomial x^2-6x + a, find the value of a if 3 alpha + 2 bita = 20

plz give me this ans.. fast and fast as u can plz ​

Answers

Answered by Anonymous
100

Solution:

Given:

⇒ Quadratic polynomial = x² - 6x + a      ........(1)

⇒ 3α + 2β = 20      

To find:

⇒ value of a

Now, α and β are zeroes of the quadratic polynomial x² - 6x + a.

\sf{\implies Sum\;of\;zeroes=-\dfrac{b}{a}}

\sf{\implies \alpha+\beta =-\bigg(\dfrac{-6}{1}\bigg)}

\sf{\implies \alpha +\beta =6\;\;\;\;........(2)}

\sf{\implies Product\;of\;zeroes=\dfrac{c}{a}}

\sf{\implies \alpha \beta =\dfrac{a}{1}}

\sf{\implies \alpha \beta =a\;\;\;\;........(3)}

From above we get 3 equations,

⇒ 3α + 2β = 20      ........(1)

⇒ α + β = 6        ........(2)

⇒ αβ = a            ........(3)

Now, By substitution method we will find α and β.

⇒ α + β = 6      .........(2)

⇒ α = 6 - β  

Put the value of α in Equation (1), we get

⇒ 3α + 2β = 20      ........(1)

⇒ 3(6 - β) + 2β = 20

⇒ 18 - 3β + 2β = 20

⇒ -β = 20 - 18

⇒ -β = 2

⇒ β = -2

Now, put the value of β in equation (2), we get

⇒ α + β = 6

⇒ α - 2 = 6

⇒ α = 6 + 2

⇒ α = 8

Now, put the value of α and β in equation (3), we get

⇒ αβ = a            ........(3)

⇒ 8 × (-2) = a

⇒ a = -16

Hence, the value of a is -16.

Answered by DhanyaDA
6

Given:

α and β are the roots of the quadratic equation

x²-6x+a

To find:

finding the value of a

Explanation:

from the given information

3 \alpha  + 2 \beta  = 20........(1)

Now let us find sum of roots

we know that

\boxed{\sf sum \: of \: roots =\dfrac{-b}{a}}

here

f(x)=x²-6x+a

a=1. b=-6. c=a

 =  > sum \: of \: roots \:   =  \dfrac{ - ( -6 )}{1}  \\  \\  =  >  \alpha  +  \beta  = 6..........(2)

multiply (2) with 2

it becomes

 =  > 2 \alpha  + 2 \beta  = 12

equating (1)-equation(2)

 =  > 3 \alpha  + 2 \beta  - 2 \alpha  - 2 \beta  = 20 - 12 \\  \\  \boxed{ \alpha  = 8}

then

 =  > 8 +  \beta  = 6 \\  \\  \boxed{ \beta  =  - 2}

as α and β are the roots

f (α)=f (β)=0

substituting f(8)=0

 =  > 8 ^{2}  - 6(8) + a = 0 \\  \\  =  > 64 - 48 + a = 0 \\  \\  =  > 16 + a = 0 \\  \\  \boxed{a =  - 16}

f(-2)=0

 =  >  {( - 2)}^{2}  - 6( - 2) + a = 0 \\  \\  =  > 4 + 12 + a = 0 \\  \\  \boxed{a =  - 16}

Similar questions