Math, asked by sanjanagullani1, 1 month ago


Q2. Find the area of a rhombus whose diagonals are of length 24 cm and 10 cm.

Answers

Answered by mangalghosh460
0

Answer:

Given

length of diagonal 24 cm and 10cm

Area of rhombus is

1/2 × d1 × d2

therefore : 1/2 × 24 × 10

the answer comes

120 cm

I hope this answer will help you

please mark me as brainlist..

Answered by INSIDI0US
6

Step-by-step explanation:

Question :-

  • Find the area of rhombus whose diagonals measures 24 cm and 10 cm.

To Find :-

  • Area of rhombus.

Solution :-

Given :

  • Diagonal (1) = 24 cm
  • Diagonal (2) = 10 cm

By using the formula,

{\sf{\longrightarrow Area\ of\ rhombus\ =\ \dfrac{1}{2} \times d_1 \times d_2}}

Where,

  • d = length of the diagonals

According to the question, by using the formula, we get :

{\sf{\longrightarrow Area\ of\ rhombus\ =\ \dfrac{1}{2} \times d_1 \times d_2}}

{\sf{\longrightarrow \dfrac{1}{\cancel2} \times \cancel{24} \times 10}}

{\sf{\longrightarrow 12 \times 10}}

{\sf{\longrightarrow 120\ cm^2}}

\therefore Hence, area of rhombus is 120 cm².

More To Know :-

\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}

Similar questions