Math, asked by hasnainmd6059, 5 months ago

Q23. Find the quadratic polynomial whose zeros are 5-3√2 and 5+ 3√2?​

Answers

Answered by Arceus02
1

Given:-

  • \sf \alpha  = 5 - 3 \sqrt{2}
  •  \sf \beta  = 5 + 3 \sqrt{2}

To find:-

  • The quadratic polynomial whose zeroes are \alpha and \beta

Answer:-

We know that, a quadratic polynomial p(x) can be expressed as,

 \sf \: p(x) =  {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes)

\\

Finding sum of zeroes:-

\sf \alpha  +  \beta  =  5 - 3 \sqrt{2}  + 5 + 3 \sqrt{2}

 \sf \longrightarrow \alpha  +  \beta  =  5   \:  \: \cancel{- 3 \sqrt{2}}  + 5    \:  \:  \cancel{  + 3 \sqrt{2} }

 \sf \longrightarrow \alpha  +  \beta  =  10 \quad \quad \dots(1)

\\

Finding product or zeroes:-

\sf \alpha  \times  \beta  = (5 - 3 \sqrt{2} )(5 + 3 \sqrt{2} )

  • Using (a - b)(a + b) = a² - b²,

 \sf \longrightarrow  \alpha    \beta  =  {5}^{2}  - (3 \sqrt{2} ) {}^{2}

\sf  \longrightarrow  \alpha  \beta  = 25 - 18

\sf  \longrightarrow \alpha  \beta  = 7 \quad \quad \dots(2)

\\

Finding the polynomial:-

 \sf \: p(x) =  {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes)

\longrightarrow \sf p(x) = {x}^{2}  - ( \alpha  +  \beta )x + ( \alpha  \beta )

From (1) and (2),

   \longrightarrow \sf p(x) =  {x}^{2}  - 10x + 7

Hence the answer is,

 \longrightarrow \underline{ \underline{ \sf{ \green{p(x) =  {x}^{2}  - 10x + 7}}}}

Similar questions