Math, asked by gladiator66, 7 months ago

Q23. Find the zeroes of the polynomial : 4x2 +5V2x-3​

Answers

Answered by sk181231
8

Answer:

\huge\underline\bold\red{AnswEr}

4x {}^{2}  + 5 \sqrt{2} x - 3

 = 4x {}^{2}  + 6 \sqrt{2} x -  \sqrt{2} x - 3

 = 2 \sqrt{2} x( \sqrt{2} x + 3) - ( \sqrt{2} x + 3)

 = ( \sqrt{2} x + 3)( 2\sqrt{2} x - 1)

So , the zeros of the polynomial are -----

( \sqrt{2} x + 3) = 0 \: and \: (2 \sqrt{2} x - 1)  = 0

x =  \frac{ - 3}{ \sqrt{2} }  \: and \: x =  \frac{1}{2 \sqrt{2} }

x =  \frac{ - 3 \sqrt{2} }{2}  \: and \: x =  \frac{ \sqrt{2} }{4}

Now the polynomial is 4x² + 52x - 3

Comparing it with ax² + bx + c = 0 , we get a = 4 , b = 52 and c = -3

sum \: of \: the \: zeros \:  =  \frac{ - 3 \sqrt{2} }{2}  +   \frac{ \sqrt{2} }{4}

 =  \frac{ - 6 \sqrt{2}  +  \sqrt{2} }{4}

 =  \frac{ - 5 \sqrt{2} }{4}

 =  \frac{ - b}{a}

product \: of \: the \: zeros \:  = ( \frac{ - 3 \sqrt{2} }{2} ) + ( \frac{ \sqrt{2} }{4} )

 = ( \frac{ - 3}{2} )( \frac{2}{4} )

 =  \frac{ - 3}{4}

 =  \frac{c}{a}

Similar questions